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The time-dependent solvation correlation function (8Btekes shift response functjpmhich describes the
solvent response to a sudden change in the charge distribution of a solute molecule, is calculated here directly
from experimentally measured dielectric dispersion de@), of the solvent. In the calculation a reaction

field with the dielectric continuum assumption is used. This simple model is applied to the experimental
results of Jimeneet al. for photoexcited coumarin and water as a solvent, and encouraging agreement is
obtained using the experimental data«jw).

1. Introduction have also given results in satisfactory agreement with the
. ) dynamical Stokes shift experimertsThe short-time solvation

~ The dynamics of polar solvents has been a topic of recent dynamics has also been interpreted in terms aghatantaneous

interest in physical chemistry and has frequently been studied o mal modesanalysis of molecular dynamics simulatics.

in charge redistribution processes in many chemical reactiéhs. | another study, the ultrafast relaxation of the Stokes shift was
Experimentally, the time-dependent fluorescent shift @lekes  g|ated to the optical Kerr effect measurement using a Brownian

shif)) has been measured over different time scales and for agqcillator model and assumptions on the spectral désityd
variety of polar solvents.® In typical Stokes shift experiments  ghqwed an encouraging agreement for the description of fast
a chromophore solute in a polar solvent is first excited by a dynamics of the solvent.

pump pulse, and then the time-dependent fluorescence spectrum” |, the present work the time-dependent solvation correlation
of the solute is recorded. For studies with coumarin or other nction is calculated using the entire dielectric spectral response
dye molecules (e.g., refs—8), the excited state of the solute  ¢,ction¢(w), 22 instead of molecular models for the solvent. It
has a Qn‘ferent charge d|§trlbgtlon from that |n.the ground State. \yjj| be seen that reasonable agreement with the experimental
There is expected to be little intramolecular vibrational motion time-dependent Stokes shift is obtained using the measured
excited when, as appears to be the case for some of thesg,,y23.24ithout explicitly considering the spatial dependence
molecules, the geometry or vibration frequencies of the solute ¢ dielectric relaxation i.ec(k,w). The two solute-solvent

molecules are barely changed. In those cases, instead ofn,qels given in section 2 are dielectric continuum models with
vibrational Franck-Condon factors or of frictional effects due a dipole in a spherical cavity and an ellipsoid filled with dipole

to a geometrical change of the solute (e.g., isomerization), thedensity}ov% with the induced charge on the boundary. The
dynamics is dominated by the electrostatic interaction with the tormer is the usuaDnsager’s caity model26 Comparison of

solvent, aqd then dielectric relaxation plays the major role in thase two models with each other and with the experimental

the relaxation process. results in ref 7 is given and discussed in section 3, followed by
Recent theoretical developmeht® have provided physical  concluding remarks in section 4.

insight into the solvation dynamics. Solvation correlation

functions calculated from the Debye form, the DavidsQole, 2. Calculation of the Solvation Correlation Function

and the Cole-Cole forms were shown to exhibit significant

differences. On the basis of similar calculations and compari-

sons with experiments it was suggested that it would be usefu

to obtain higher frequency dielectric data for a better description

of ), the solvation correlation functich. The effect of ) = v(t) — v() L

molecular shape has also been discuseduch attention has 1(0) — v(o0)

also been devoted to treating the spatial dependence of the

dielectric response functioa(k,w), which includes the molec-  where(t) is the frequency of the fluorescence maximum at

ular nature of the solveit:12 The dynamical mean spherical time t. If there is little internal vibrational excitation of the

approximation theory has been influential; the comparison with solute in the transition, then the time dependence(pfarises

experimental results is at present qualitatively satisfactoly. mainly from the time-dependent solvation energygsoM(t),

A molecular hydrodynamic theoly/6has been applied to water  resulting from the change in the charge distribution of solute

solvation dynamics with a model dielectric response func- induced by the photoexcitation &t= 0. St), also termed a

tion.’617 Good agreement between the experimental and “solvation correlation function”, can be rewritten as

calculated solvation correlation function was obtained, and the

role of the intermolecular ©-O stretching mode was stresséd. AEM(t) — AESM(c0)

Molecular dynamics calculations have provided information on ) = o ol

how polar solvents change the reaction ¥a&ad the role played AET(0) — AET(o)

by various shells of solvent molecul2¥ Such calculations

The Stokes shift response functi&t) is defined in terms
Iof the experimental measurements as

)

In the following sectionAES°V(t) is related to the dielectric
T Present address: Department of Chemistry, University of California, dlsperS|on§(a)_) by as_sumlng that the solvation energy is the
Berkeley, CA 94720. electrostatic interaction energy between the solute and the
€ Abstract published ilAdvance ACS Abstractddarch 1, 1997. surrounding solvent.
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2.1. Dielectric Continuum Models. For the case where the
charge distribution of the solute is a point dipole moment,
the energy of interaction of the dipole with the solveEf\(t),
is

E*Mt) = —u(t)-RE) 3)

whereR(t) is the reaction field at timedue to the surrounding

solvent acting on the solute dipole. The reaction fie[t) can

be obtained from linear response theory:
t ! ! !

R() = [ dt' r(t—t) u(t) (4)
wherer(t—t') is a response function and, in general, is a tensor.
Causality requires tha{t) = 0 fort < 0. The Fourier transform
is introduced

f@= /" df()e™ (5)
wherez can be generalized to be a complex variable. Usually

there is a range for Ingf wheref(2) is analytic2’ The inverse
of eq 5 is given by the standard expression

f(t) = % [ dzé" () ©)

where C is a suitable contour that goes fromeo to oo if
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where the frequency-dependent dielectric constday is

€@=1+4nt;(2, i=1,2 (13)
Equations 11 and 12 are the same as the static equations, and
so the solution of the static boundary value problem applies
here. Using the standard reaction field expresdidhpne thus

obtains for the case of a point dipole in a sphere,
(14)

wherea, the radius of the cavity, represents the size of the solute.
Since a normalization appears in calculatig in eq 2, any
constant factor cancels, and so the final response function is
independent of. Equations 7 and 14, with replaced byw,

were used in ref 31 and termed therguasi-static boundary-
value calculation. An explicit derivation of the equations is
given above, and the method can be applied to any other model
for the solute.

We consider the case where the optical excitation of the solute
molecule occurs, in effect, instantaneously and the dipole
moment of the molecule is changed framto u. at timet =
0. Thus, the dipole moment of the soluté&) can be written
as

u() = pg + 0O (e — 1y (15)

projected onto the real axis and stays inside the region where

f(2) is analytic. Using the convolution theorem, eq 4 yields

R(2) =F(2) i(2) (M

We consider now a model system where it is assumed that
the solute is treated as a spherical cavity with the dipole placed
at the center. To obtain the appropriate equatiorf (), both
for this model of the solute and for any other, it is necessary to
solve the time-dependent electrostatic problem for the system,
The dielectric displacemenr;, in any phase is related to the
electric field thereE;, and the dielectric polarizatioR; by?8

©)

where there should be no danger of confusing the position
coordinater in egs 8-12 and in footnote 30 with the linear
response function in eq 4.

In linear response theory,

Di(r.t) = E(r t) + 4nPi(r 1)

Py =/ dt at—t) (L) ©)

where it is assumed that the polarizability of the regigris
local in space. For a two-phase systéns, 1, 2, the boundary

conditions at the (1,2) interface are that the normal components

DiD(r ,t) are equal when there is no interfacial charge density,
and the parallel componenE!(r,t) are also equa® Taking

the Fourier transform of eq 9 and of these boundary conditions,
we havé?

P(r2 =&(2 E(r,2 (10)
and
Dir2=Dy0r2. Elra=Exr2  (11)
From eq 10 we have
D(ra=¢@E(r2, i=12 (12)

where0(t) is the unit step function. Therefore, eq 4 yields

R() =gy + [ dt r(t—t) 6(t) Au (16)
where, using eq 1%

r=7O)= [ d -n=25"1 gy

s= e 2.+ 1

Here, Au = ue — ug andes is the static dielectric constant of
the solvent. The first term in eq 16 describes the reaction field
arising fromug, and the second term is the changeRift) due
to the sudden change of dipole at titve 0. The former equals
the static reaction fieldgqy, since before the excitation the
solvent is in equilibrium with the ground state dipole moment.

At time t, if the molecule suddenly fluoresces, and so reverts
to the ground state, the dipole moment is changed bagk to
and the solvent has an immediate reaction arising from the
optical frequency dielectric constart,,. If R¢(t) denotes the
reaction field immediately after this instantaneous reaction of
the solvent, then

Ri(t) = R(t) — roAu (18)

whereR(t) is the value just prior to this fluorescence, given by
eq 16, and

. :g €op~ 1
op a3260p+1

(19)

The resulting solvation energy difference between the excited
state and the ground state molecule, at timis now

AEM) = BV — B0 = —ueR(M + g R()
— 1 (Fop + rA + AE()

(20)
where
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AE(®) = —(Aw?[" dt r(t—t) 6(t) (21)

Hsu et al.

coswt
w

Im F(w)-Au — Au-t(0)-Au

AE(D) = — %A,u' [ do
(30)

In eq 20, only the second term is time-dependent and so the

first term cancels in calculatin§(t) in eq 2.

The Fourier transform oAE(t) can be obtained using the

complex Fourier transform di(t),

S T (o
S~ (e dt—[_.]t_o =

- ifim2) <0 (22)

Therefore, from the convolution theorem,
_ Au)?
AE@)= — %r(z) (23)

wherez denotes ¢ — i) with o real andzy being a small
positive numbe?3 Taking the inverse transform &E(z), we
have, using the results in Appendix A,

2
AE(t) = — % fcdzemilzf(z) (24)
_ AW e, coswt, [e@)—1] 5
= o ﬁ) dw | [26 @)+ 1] (Aw)rg,

fort= 0 (25)

The contour of integratior, in eq 24 denotes a path parallel

to but slightly below the real axis in the compleplane. The

solvation correlation functio®(t) can be calculated using eqgs
2, 20, and 25. The optical response has already been include
in eq 18, and so theo in eq 25 actually denotes a high
frequency,wop, below the optical absorption band and the Im

€(w) is essentially zero abop. The integration ovezin eq 24

is discussed in Appendix A, and remarks on the relation between
the optical response and the upper limit of the frequency range

of eq 25 are made in Appendix B.

The effect of molecular shape was also studied here by
considering an ellipsoid model: if an ellipsoid filled with
homogeneous dipole density is used to represent the solute, thé”
solution for the reaction fiel® is given in section 20 of ref 25
and in ref 10. For any frequenay, it is the same as in eq 7

except for a different response functidtw):

fy O (26)

where

_ 3 Al = A)le(w) — 1]
' abc e(w) + [1 — e(w)]A

i=abc (27)

andA,, An, andA, are ellipsoidal shape factor integrétsTables

which is then used to calculaft). If the above expressions
are applied to apherefilled with homogeneous dipole density
(Aa = A, = Ac = 1/3), the expression fokE(t) is the same as
that given by eq 25 for the dipole in a sphere model.

2.2. Results. The above models are now applied to the
system of coumarin 343 (C343) dissolved in wdteFhe results
of a numerical calculation, using egs 2, 20, and 25 and the
e(w) of water atT = 298 K2324are plotted in Figure 1. As in
ref 22, in the low-frequency regionv(< 3.0 x 10" rad s'?,
about 1.6 cm?),35 Debye’s formula is used,

€57 €

R oty (31)

e(w) = ¢

with tp = 8.2 ps,es = 78.3, andk; = 4.21. For the frequency
rangew = 3.0 x 10" to 7.2 x 10" rad s'1, a spline fit was
used for both the real and imaginary parts@b). The upper

limit of the integration is 7.2x 10" rad s, which is
approximately 3800 crt. The optical dielectric constantd,)

was assumed to be 1.8. The same numerical answer was
obtained for the integration in eq 25 using either the fast Fourier
transform (FFT) subroutines or the direct numerical integration.
This agreement confirms the quality of the present calculation.
The plot of the calculate&(t) is compared in Figures 1 and 2
with the t) obtained from the experimentally fitted parameters
of experimental data in ref 7.

g For an oblate ellipsoid witle/b = a/c = 0.4 and with the
change of dipoleAu parallel to one of the long axedE(t)

was calculated by the inverse Fourier transform of eq 29 and
theng(t) is obtained from eqs 2 and 20. The dimensions of the
ellipsoid were chosen to approximate the shape of the coumarin
ion* For this case the ellipsoidal shape factor$‘afg = 0.588,

Ap = A; = 0.206. The results of the calculation are plotted in
Figure 2.

3. Discussion

We see from Figures 1 and 2 that this simple continuum
model of solute and solvent gives a time-dependent Stokes shift
reasonably close to that observed in the experiment. There may
or may not be a difference of behavior at very short timesSQq
fs) in Figure 1 between the experimental and calculated curves.
In the experiment$the cross-correlation of the pump pulse and
the gate pulse is reported to be 10 fs (full width at half-
maximum).

It is perhaps surprising that the simple model works as well
as it does, and it will be interesting to see whether similar
agreement is obtained for other solvents. Because the dielectric
dispersione(w) of the solvent contains a broad range of
frequencies in its response, it is not surprising that the calculated

and the relation of these shape factors to elliptic functions are "eSPonse function, like the experimental, is far from being a
given in ref 34. The expression for the solvation energy single exponential. The entire dielectric dispersion spectrum

(ABSMY)) is similar to that in eq 20 except that nowis a
tensor instead of a scalar

AE(H) = Aue [*_dt r(t—t) 6(t)-Au (28)
The expression foAE(z) given by eq 23 becomes
AE@) = — éAu-F(Z)-Au (29)

The inverse Fourier transform of this equation yields(t):

of €(w) includes the low-frequency part, which is well-described
by the Debye formula, and the high-frequency part, which
contains various contributions from inter- and intramolecular
vibrational modes of the solvent. The former contributes to
the long-time behavior, whose characteristic behavior is diffu-
sional, while the latter is more “reversible” and determines the
short-time behavior.

Many studies on solvation dynamics (e.g., refs 518, 14,
17, 31, 39-41) use an analytic form for(w) which includes
various models for the low-frequency part and damped oscil-
lations for higher frequency region. Horegal> has included
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Figure 1. Calculatedy(t) (solid line) for a dipole in a sphere using eq

25. The dashed line depicts the experimental result from ref 7. The

latter is a fit to their experimental data with one narrow Gaussian and
two exponential functions.

1_

Time (ps)

Figure 2. CalculatedS(t) (solid line) for a model of an ellipsoid solute
using egs 26 and 29. The ellipsoid fab:c = 0.4:1:1 with the dipole
moment lying on thé or ¢ axis. The dashed line is the experimental
result, which is the same as that in Figure 1.

a low-frequency Debye model and two or three damped
oscillators at higher frequencies for acetonitrile and methanol
and has obtained a reasonably g&) for acetonitrile. In the
interesting work by Nandet al1” excellent agreement between
the experimental and calculat&t) was obtained, although the
model provided for water did not quite resemble the experi-
mentale(w). Loring et al® calculated the fluorescence and
hole-burning line shape with a molecular theory using a Debye
model fore(w) in obtaining the results. Jarzebaal® showed
that simple continuum models, such as single- or multiple-
component Debye models or the Celeavidson model, ac-
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Figure 3. Imaginary part of the quantity §(w) — 1)/(2¢(w) + 1))/w
which is proportional to the term that is cosine transformed in eq 25,
for the dipole in a sphere cavity. Circles denote the data points
calculated from experimentalw). The zero-frequency limit of this
quantity, estimated from the Debye formula (eq 31);&073 ps rad™.

It is seen that the contribution of the intramolecular vibrational bands
is quite small compared to that of the librational mode at about 800
cm L. The units of the ordinate are ps rad

3000 4000

r(w) in eq 14 is replaced by t 1/e(w). One then finds that
the results in Figure 2 for the ellipsoid filled with a uniform
dipole density lie between those for the dipole in a sphere in
Figure 1 and those for a charge in a sphere. This result is not
unexpected, since the ellipsoid filled with a homogeneous dipole
density that is parallel to the long axis has net charges distributed
at the surface at both ends of the long axis. The latter would
behave more or less like two not quite separated regions of
charge density and would be intermediate between a charge and
a point dipole in its behavior.

In the results of the present calculation, the small peaks of
recurrence in Figures 1 and 2 show a “reversibility” of the
motion, with the shortest period being about 44 fs, which
corresponds to roughly 760 crhin frequency. The absorption
band in that region has been assigned to a “libration”, namely,
oscillation of the water molecule in the force field of its
neighbors® The other bands with higher frequenciese{m)
do not yield any significant recurrence from the rapid initial
decay ofY(t), due to their contribution te(w) being very small
and, to a lesser extent, due to the ¥actor in the integrand.
Thereby, these resonance bands contribute only a small portion
of the rapid initial decay (cf. Figure 3). Nanei all” pointed
out the importance of the intermolecular-€ stretching mode,
which constitutes the 193 crh band ine(w) and corresponds
to 170 fs as its recurrence period. In Figure 3 there is a small

curately predicted the averaged solvation time but not the shapeshoulder located between 150 and 200 &mrising from such
of §t), and they suggested that it would be useful to have higher motion. In Figures 1 and 2, the (broader) recurrence peak at
frequency dielectric data included. Their suggestion is indeed about 0.2 ps can be regarded as a mixed result of this lower

confirmed by our present calculation.
We used a spline fit for the discrete datac(b). Thereby,

frequency band and the librational motion, and the rate of decay
is seen to slow down at this region, for both the experimental

there were no adjustable parameters and a direct connection waand the calculate&(t).

made betweea(w) andS(t). Any analytical model that provides
a reasonably good description of thgv) spectrum would of
course give essentially the saig#). However, we believe that

A molecular dynamics (MD) simulation of rigid water showed
a similar pattern of recurrence f®t)” and supports the idea
that the principal reversible mode is intermolecular. In that MD

directly using the experimental dielectric dispersion data with work the amount of initial decay is, out of the total calculated
a simple continuum model provides a transparent way of St), roughly 10% less than our result in Figure 1. Part of this
introducing the solvation dynamics, especially for the possible difference may arise from the effect of the rapidly dephased
cases where model dielectric theories do not provide a satisfac-intramolecular modes of water, which occurs in our calcula-
tory description ofe(w). tion: It includes all dispersive contributions, unlike the MD
The model used in Figure 1 is the dipole in a spherical cavity result, since a rigid model for the individual water molecules
in a solvent dielectric continuum, while that used in Figure 2 is was used in the latter. Both the MD study and the present result
the ellipsoid with a homogeneous dipole density. The rate of show the importance of including the moderately high frequency
decay ofS(t) with t for the latter is slightly faster than that for  intermolecular components of thet dielectric response spectrum
the former. There is seen to be little effect of changing the on the dynamics in sub-picosecond time scale, in addition to
shape of solute from a sphere to an ellipsoid. Results (hot including the Debye region.
shown) were also obtained for tr&t) when the dipole is In Figures 1 and 2 it is seen th&{t) for an oblate ellipsoid
replaced by a single charge. In that case, the solvent responsevith its dipole “lying” in the plane of the molecule decays only
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slightly faster than it does for a sphere. Recalling that the sphereby ¥'(w) and "' (w), respectively, i.e.f(w) = F'(w) + i (w),

model also applied to a homogeneous dipole density model, and noting that(—w) = *(w), which follows because(t) is

we also see in this comparison that the molecular shape affectseal, we then find

St) only a little, within the approximation of using a dielectric

continuum. For a more complete description of the solvation F(2) — 7(0) ; w, M

dynamics, in addition to satisfying the boundary condition at fcdzwem: Zﬂ) dw% coswt +

the solute-solvent interface, the spatial dependence of the P(w) —r

dielectric constait36would also be taken into account. 2 f “do——— sinwt (A4)
When the smooth decay of our theoretically calcula®&yl 0 w

after 0.5 ps is fitted by an exponential function, the results in .

Figure 1 correspond to a lifetime of 810 fs. This number agrees 1herefore, eq A2 yields

well with the slowest exponential component in ref 7 obtained ) ()

by fitting to the experimental data, namely, 880 fs. On the other _ A o (0

hand, the Debye model (eq 31) describes a single-exponential BO =~ —y‘% ﬁ) i w coswt +

relaxation process: For the sphere cavity model, the relaxation o  T(w)—rg .

time for t) obtained from the Debye formula i(2¢; + 1)/ ﬁ) dow e sinwt + zr O(t)[ (A5)

(2¢s + 1) (e.qg., ref 31), which is 490 fs. The Debye model is

a good description of(w) for @ = 0 to about 3.0x 10" rad Another useful property is obtained by noting teE(t) = 0
s~ For frequencies higher than that, the measu(ed begins for t < 0 (eq 22)_ pThZ first integranél in quAs ié )an even

;ggr\giarfe IgotweDsggeesf;?ml:;a{s de;i?ga ?odoeé:caljlr %%?ug:c?gr function oft, while the second is an odd function. Since the
9 y b y sum of them yields zero for negatitethey must be equal for

3 ps. The current lifetime fit fot = 0.5-2 ps is not, we have ositivet. Thus, the calculation foAE(t) can be performed

e e e ooy negrating eierof e i erms 12 A5 I th presens
y P P work, the first term was used becauséw) goes to zero a®

for higher frequencies. goes to the optical limit in an integration region, and so it is

4. Conclusion numerically easier to calculate. We can write

_ The_ solvation_ correlation funqtion qan_be calculated by _ éﬂ_z w . F'(w) 5

including the entire spectrum of dielectric dispersion da) AE() = —— ﬁ) do— = coswt — Au'ry, fort=0

up to the optical region. Using simple dielectric continuum (AB6)
models that neglect the molecular property of the solvent, our

results show that the correlation function obtained gives a which yields eq 25.

reasonable description for the time-dependent Stokes shift The second term of eq (A5) can be better evaluated, if desired,
measurement. as follows,
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Appendix A: Analysis for Equation 24
The first term now has a finite range efand so is numerically

Equation 24 can be rewritten as . :
q easier to calculate than the left-hand side of eq A7.

2 o
AE(t) = — Au” dz@eizt (A1) Appendix B: Remark on the Optical Response
27 JC iz Contribution
2 (7 — F 2 7 i = i i
NP dzr(z) . r(O)em_ A’ dZ@eIZt A2) Attime t = 0, the first term in eq A6 would formally become
2rJC iz 2rJC iz AL (o)
© _ 2 _ 2
where C denotes a contour that is parallel but slightly below B nﬂ o G0 o AwT(0) = Au'rg (B1)
the real axis. The second of the integrals in eq A2 can be
shown, using the residue theorem, to equal(R) 6(t). We Equation B1 follows from the KramerKronig relationship’-38
note thaff(2) is analytic on the real axi® andf(z=0) is a real when the upper limit is really-o (and notwey). Equation A5
numberd? The integrand in the first integral does not possess then givesAE(0) = 0. However, practically the integration is
a pole atz = 0, since cut off at a frequencydqp) in the range between the response

arising from nuclear motions (8 w < w,) and the electronic
polarization e < w < ). Because of the large separation
of the two frequency regions (e.@, ~ 10° cm~! while we ~
10° cm™Y), thef"’(w) from the fast electronic polarization gives
and d(2)/dz has no singularity ar = 0. We may therefore  approximately a constant contributiogyto i’ (w) over the lower
allow the contourC for the first integral in eq A2 to coincide  frequency region (6 w < w,).38 That constant can be obtained
with the real axis. Denoting the real and imaginary pait(@ from the Kramers-Kronig relation:

2 —F0) _ [dr(z)

- Gz o +0@, z—O0 (A3)



Time-Dependent Stokes Shift

a)r”(w)

W) = P —
Flow =22 fa 20
UJ F'I 'I;'"
=g j;, Ao w2 (w) _+ " ® do w (a))2 (82)
T Wop — w? . op —w
o F” o Fl'
~0-2["a Do 20°q, @) gy
TTY Wel w T+ Wop w

whereP denotes the principal part of and where it has been
assumed that there is negligible absorption in the frequency

interval (w,,wel), SOT"'(w) is practically zero there. In obtaining

eq B3, the large separation of the two frequency regions in the

integrations allows us to assumg < wep < wel, and sm)op
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and w? dominate in the denominators of the first and second Chem. Soc1991, 113 7a.

integrals, respectively, in eq B2).
If the upper limit in eq B1 were replaced lay,, it would
become

2A° fwop ol (@) _ ZAﬂ 2 f L@
w 0 w
" do ~"‘“’)) (T~ Ty (B4)

where we have used egs B1 and B3.

Thus, inAE(t), there is expected to be an initial drop that is

faster than the time resolution set by this cutoff frequengy
due to the electronic polarization:

AE(t=0") = —Au’r,, (B5)

We see from the above equation that when thE(t) is

calculated usingp instead ofw in eq (A6) as the upper limit
of integration, theAE(t) starts from a valuAE(0") that arises
from the electronic polarization AE(t) eventually goes to a

static interaction energWE(t—+w), which equals-Au?rs (eq
AB). Thus, the changes INE(t) after the initial brief time

interval, 0", describe the solvational energy that arises from

the nuclear response of the solvent.
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