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The time-dependent solvation correlation function (theStokes shift response function), which describes the
solvent response to a sudden change in the charge distribution of a solute molecule, is calculated here directly
from experimentally measured dielectric dispersion data,ε(ω), of the solvent. In the calculation a reaction
field with the dielectric continuum assumption is used. This simple model is applied to the experimental
results of Jimenezet al. for photoexcited coumarin and water as a solvent, and encouraging agreement is
obtained using the experimental data onε(ω).

1. Introduction

The dynamics of polar solvents has been a topic of recent
interest in physical chemistry and has frequently been studied
in charge redistribution processes in many chemical reactions.1-20

Experimentally, the time-dependent fluorescent shift (theStokes
shift) has been measured over different time scales and for a
variety of polar solvents.2-8 In typical Stokes shift experiments
a chromophore solute in a polar solvent is first excited by a
pump pulse, and then the time-dependent fluorescence spectrum
of the solute is recorded. For studies with coumarin or other
dye molecules (e.g., refs 3-8), the excited state of the solute
has a different charge distribution from that in the ground state.
There is expected to be little intramolecular vibrational motion
excited when, as appears to be the case for some of these
molecules, the geometry or vibration frequencies of the solute
molecules are barely changed. In those cases, instead of
vibrational Franck-Condon factors or of frictional effects due
to a geometrical change of the solute (e.g., isomerization), the
dynamics is dominated by the electrostatic interaction with the
solvent, and then dielectric relaxation plays the major role in
the relaxation process.
Recent theoretical developments9-20 have provided physical

insight into the solvation dynamics. Solvation correlation
functions calculated from the Debye form, the Davidson-Cole,
and the Cole-Cole forms were shown to exhibit significant
differences.9 On the basis of similar calculations and compari-
sons with experiments it was suggested that it would be useful
to obtain higher frequency dielectric data for a better description
of S(t), the solvation correlation function.8 The effect of
molecular shape has also been discussed.10 Much attention has
also been devoted to treating the spatial dependence of the
dielectric response function,ε(k,ω), which includes the molec-
ular nature of the solvent.11,12 The dynamical mean spherical
approximation theory has been influential; the comparison with
experimental results is at present qualitatively satisfactory.13,14

A molecular hydrodynamic theory15,16has been applied to water
solvation dynamics with a model dielectric response func-
tion.16,17 Good agreement between the experimental and
calculated solvation correlation function was obtained, and the
role of the intermolecular O‚‚‚O stretching mode was stressed.17

Molecular dynamics calculations have provided information on
how polar solvents change the reaction rate18 and the role played
by various shells of solvent molecules.9,19 Such calculations

have also given results in satisfactory agreement with the
dynamical Stokes shift experiments.7 The short-time solvation
dynamics has also been interpreted in terms of aninstantaneous
normal modesanalysis of molecular dynamics simulations.20

In another study, the ultrafast relaxation of the Stokes shift was
related to the optical Kerr effect measurement using a Brownian
oscillator model and assumptions on the spectral density21 and
showed an encouraging agreement for the description of fast
dynamics of the solvent.
In the present work the time-dependent solvation correlation

function is calculated using the entire dielectric spectral response
functionε(ω),22 instead of molecular models for the solvent. It
will be seen that reasonable agreement with the experimental
time-dependent Stokes shift is obtained using the measured
ε(ω)23,24without explicitly considering the spatial dependence
of dielectric relaxation, i.e.,ε(k,ω). The two solute-solvent
models given in section 2 are dielectric continuum models with
a dipole in a spherical cavity and an ellipsoid filled with dipole
density,10,25 with the induced charge on the boundary. The
former is the usualOnsager’s caVity model.26 Comparison of
these two models with each other and with the experimental
results in ref 7 is given and discussed in section 3, followed by
concluding remarks in section 4.

2. Calculation of the Solvation Correlation Function

The Stokes shift response functionS(t) is defined in terms
of the experimental measurements as

whereν(t) is the frequency of the fluorescence maximum at
time t. If there is little internal vibrational excitation of the
solute in the transition, then the time dependence ofν(t) arises
mainly from the time-dependent solvation energy,∆Esolv(t),
resulting from the change in the charge distribution of solute
induced by the photoexcitation att ) 0. S(t), also termed a
“solvation correlation function”, can be rewritten as

In the following section∆Esolv(t) is related to the dielectric
dispersionε(ω) by assuming that the solvation energy is the
electrostatic interaction energy between the solute and the
surrounding solvent.
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S(t) )
ν(t) - ν(∞)
ν(0)- ν(∞)

(1)

S(t) )
∆Esolv(t) - ∆Esolv(∞)
∆Esolv(0)- ∆Esolv(∞)

(2)
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2.1. Dielectric Continuum Models. For the case where the
charge distribution of the solute is a point dipole moment,µ,
the energy of interaction of the dipole with the solvent,Esolv(t),
is

whereR(t) is the reaction field at timet due to the surrounding
solvent acting on the solute dipole. The reaction fieldR(t) can
be obtained from linear response theory:

wherer( t-t′) is a response function and, in general, is a tensor.
Causality requires thatr (t) ) 0 for t < 0. The Fourier transform
is introduced

wherez can be generalized to be a complex variable. Usually
there is a range for Im(z) wheref̃(z) is analytic.27 The inverse
of eq 5 is given by the standard expression

where C is a suitable contour that goes from-∞ to ∞ if
projected onto the real axis and stays inside the region where
f̃(z) is analytic. Using the convolution theorem, eq 4 yields

We consider now a model system where it is assumed that
the solute is treated as a spherical cavity with the dipole placed
at the center. To obtain the appropriate equation forr̃ (z), both
for this model of the solute and for any other, it is necessary to
solve the time-dependent electrostatic problem for the system,
The dielectric displacement,Di, in any phasei is related to the
electric field there,Ei, and the dielectric polarizationPi by28

where there should be no danger of confusing the position
coordinater in eqs 8-12 and in footnote 30 with the linear
response functionr in eq 4.
In linear response theory,

where it is assumed that the polarizability of the regionRi is
local in space. For a two-phase system,i ) 1, 2, the boundary
conditions at the (1,2) interface are that the normal components
Di

⊥(r ,t) are equal when there is no interfacial charge density,
and the parallel componentsEi

||(r ,t) are also equal.29 Taking
the Fourier transform of eq 9 and of these boundary conditions,
we have30

and

From eq 10 we have

where the frequency-dependent dielectric constantεi(z) is

Equations 11 and 12 are the same as the static equations, and
so the solution of the static boundary value problem applies
here. Using the standard reaction field expression,25,31one thus
obtains for the case of a point dipole in a sphere,

wherea, the radius of the cavity, represents the size of the solute.
Since a normalization appears in calculatingS(t) in eq 2, any
constant factor cancels, and so the final response function is
independent ofa. Equations 7 and 14, withz replaced byω,
were used in ref 31 and termed there aquasi-static boundary-
Value calculation. An explicit derivation of the equations is
given above, and the method can be applied to any other model
for the solute.
We consider the case where the optical excitation of the solute

molecule occurs, in effect, instantaneously and the dipole
moment of the molecule is changed fromµg to µe at time t )
0. Thus, the dipole moment of the soluteµ(t) can be written
as

whereθ(t) is the unit step function. Therefore, eq 4 yields

where, using eq 14,32

Here,∆µ ≡ µe - µg andεs is the static dielectric constant of
the solvent. The first term in eq 16 describes the reaction field
arising fromµg, and the second term is the change inR(t) due
to the sudden change of dipole at timet ) 0. The former equals
the static reaction fieldrsµg, since before the excitation the
solvent is in equilibrium with the ground state dipole moment.
At time t, if the molecule suddenly fluoresces, and so reverts

to the ground state, the dipole moment is changed back toµg
and the solvent has an immediate reaction arising from the
optical frequency dielectric constant,εop. If Rf(t) denotes the
reaction field immediately after this instantaneous reaction of
the solvent, then

whereR(t) is the value just prior to this fluorescence, given by
eq 16, and

The resulting solvation energy difference between the excited
state and the ground state molecule, at timet, is now

where

Esolv(t) ) -µ(t)‚R(t) (3)

R(t) )∫-∞

t
dt′ r (t-t′) µ(t′) (4)

f̃(z) )∫-∞

∞
dt f(t)e-izt (5)

f(t) ) 1
2π∫C dzeizt f̃(z) (6)

R̃(z) ) r̃ (z) µ̃(z) (7)

Di(r ,t) ) Ei(r ,t) + 4πPi(r ,t) (8)

Pi(r ,t) )∫-∞

t
dt′ Ri(t-t′) Ei(r ,t′) (9)

P̃i(r ,z) ) R̃i(z) Ẽi(r ,z) (10)

D̃1
⊥(r ,z) ) D̃2

⊥(r ,z), Ẽ1
||(r ,z) ) Ẽ2

||(r ,z) (11)

D̃i(r ,z) ) εi(z) Ẽi(r ,z), i ) 1, 2 (12)

εi(z) ) 1+ 4πR̃i(z), i ) 1, 2 (13)

r̃(z) ) 2

a3
ε(z) - 1

2ε(z) + 1
(14)

µ(t) ) µg + θ(t)(µe - µg) (15)

R(t) ) rsµg +∫-∞

t
dt′ r(t-t′) θ(t′) ∆µ (16)

rs≡ r̃(0))∫-∞

t
dt′ r(t-t′) ) 2

a3
εs - 1

2εs + 1
(17)

Rf(t) ) R(t) - rop∆µ (18)

rop ) 2

a3
εop - 1

2εop + 1
(19)

∆Esolv(t) ) Ee
solv(t) - Eg

solv(t) ) -µe‚R(t) + µg‚Rf(t)

) -µg‚(rop + rs)∆µ + ∆E(t)
(20)
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In eq 20, only the second term is time-dependent and so the
first term cancels in calculatingS(t) in eq 2.
The Fourier transform of∆E(t) can be obtained using the

complex Fourier transform ofθ(t),

Therefore, from the convolution theorem,

wherez denotes (ω - iη) with ω real andη being a small
positive number.33 Taking the inverse transform of∆Ẽ(z), we
have, using the results in Appendix A,

The contour of integration,C, in eq 24 denotes a path parallel
to but slightly below the real axis in the complexzplane. The
solvation correlation functionS(t) can be calculated using eqs
2, 20, and 25. The optical response has already been included
in eq 18, and so the∞ in eq 25 actually denotes a high
frequency,ωop, below the optical absorption band and the Im
ε(ω) is essentially zero atωop. The integration overz in eq 24
is discussed in Appendix A, and remarks on the relation between
the optical response and the upper limit of the frequency range
of eq 25 are made in Appendix B.
The effect of molecular shape was also studied here by

considering an ellipsoid model: if an ellipsoid filled with
homogeneous dipole density is used to represent the solute, the
solution for the reaction fieldR is given in section 20 of ref 25
and in ref 10. For any frequencyω, it is the same as in eq 7
except for a different response functionr̃ (ω):

where

andAa,Ab, andAc are ellipsoidal shape factor integrals.25 Tables
and the relation of these shape factors to elliptic functions are
given in ref 34. The expression for the solvation energy
(∆Esolv(t)) is similar to that in eq 20 except that nowr is a
tensor instead of a scalarr:

The expression for∆Ẽ(z) given by eq 23 becomes

The inverse Fourier transform of this equation yields∆E(t):

which is then used to calculateS(t). If the above expressions
are applied to aspherefilled with homogeneous dipole density
(Aa ) Ab ) Ac ) 1/3), the expression for∆E(t) is the same as
that given by eq 25 for the dipole in a sphere model.
2.2. Results. The above models are now applied to the

system of coumarin 343 (C343) dissolved in water.7 The results
of a numerical calculation, using eqs 2, 20, and 25 and the
ε(ω) of water atT ) 298 K,23,24are plotted in Figure 1. As in
ref 22, in the low-frequency region (ω e 3.0× 1011 rad s-1,
about 1.6 cm-1),35 Debye’s formula is used,

with τD ) 8.2 ps,εs ) 78.3, andεi ) 4.21. For the frequency
rangeω ) 3.0× 1011 to 7.2× 1014 rad s-1, a spline fit was
used for both the real and imaginary parts ofε(ω). The upper
limit of the integration is 7.2× 1014 rad s-1, which is
approximately 3800 cm-1. The optical dielectric constant (εop)
was assumed to be 1.8. The same numerical answer was
obtained for the integration in eq 25 using either the fast Fourier
transform (FFT) subroutines or the direct numerical integration.
This agreement confirms the quality of the present calculation.
The plot of the calculatedS(t) is compared in Figures 1 and 2
with theS(t) obtained from the experimentally fitted parameters
of experimental data in ref 7.
For an oblate ellipsoid witha/b ) a/c ) 0.4 and with the

change of dipole∆µ parallel to one of the long axes,∆E(t)
was calculated by the inverse Fourier transform of eq 29 and
thenS(t) is obtained from eqs 2 and 20. The dimensions of the
ellipsoid were chosen to approximate the shape of the coumarin
ion.4 For this case the ellipsoidal shape factors are34Aa ) 0.588,
Ab ) Ac ) 0.206. The results of the calculation are plotted in
Figure 2.

3. Discussion

We see from Figures 1 and 2 that this simple continuum
model of solute and solvent gives a time-dependent Stokes shift
reasonably close to that observed in the experiment. There may
or may not be a difference of behavior at very short times (∼50
fs) in Figure 1 between the experimental and calculated curves.
In the experiments,7 the cross-correlation of the pump pulse and
the gate pulse is reported to be 100-110 fs (full width at half-
maximum).
It is perhaps surprising that the simple model works as well

as it does, and it will be interesting to see whether similar
agreement is obtained for other solvents. Because the dielectric
dispersion ε(ω) of the solvent contains a broad range of
frequencies in its response, it is not surprising that the calculated
response function, like the experimental, is far from being a
single exponential. The entire dielectric dispersion spectrum
of ε(ω) includes the low-frequency part, which is well-described
by the Debye formula, and the high-frequency part, which
contains various contributions from inter- and intramolecular
vibrational modes of the solvent. The former contributes to
the long-time behavior, whose characteristic behavior is diffu-
sional, while the latter is more “reversible” and determines the
short-time behavior.
Many studies on solvation dynamics (e.g., refs 5, 8-10, 14,

17, 31, 39-41) use an analytic form forε(ω) which includes
various models for the low-frequency part and damped oscil-
lations for higher frequency region. Hornget al.5 has included

∆E(t) ) -(∆µ)2∫-∞

t
dt′ r(t-t′) θ(t′) (21)

∫-∞

∞
θ(t)e-izt dt ) [e-izt

-iz] t)0
∞ ) 1

iz
, if Im(z) < 0 (22)

∆Ẽ(z)) -
(∆µ)2

iz
r̃(z) (23)

∆E(t) ) -
(∆µ)2

2π ∫Cdzeizt1izr̃(z) (24)

) -
4(∆µ)2

a3π
∫0∞dωcosωt

ω
Im[ ε(ω) - 1

2ε(ω) + 1] - (∆µ)2rs,

for t g 0 (25)

r̃ (ω) ) (fa 0 0
0 fb 0
0 0 fc

) (26)

fi ) 3
abc

Ai(1- Ai)[ε(ω) - 1]

ε(ω) + [1 - ε(ω)]Ai
, i ) a, b, c (27)

∆E(t) ) ∆µ‚∫-∞

t
dt′ r (t-t′) θ(t′)‚∆µ (28)

∆Ẽ(z) ) - 1
iz

∆µ‚r̃ (z)‚∆µ (29)

∆E(t) ) - 2
π

∆µ‚∫0∞dωcosωt
ω

Im r̃ (ω)‚∆µ - ∆µ‚r̃ (0)‚∆µ
(30)

ε(ω) ) εi +
εs - εi

1+ iωτD
(31)
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a low-frequency Debye model and two or three damped
oscillators at higher frequencies for acetonitrile and methanol
and has obtained a reasonably goodS(t) for acetonitrile. In the
interesting work by Nandiet al.17 excellent agreement between
the experimental and calculatedS(t) was obtained, although the
model provided for water did not quite resemble the experi-
mentalε(ω). Loring et al.39 calculated the fluorescence and
hole-burning line shape with a molecular theory using a Debye
model forε(ω) in obtaining the results. Jarzebaet al.8 showed
that simple continuum models, such as single- or multiple-
component Debye models or the Cole-Davidson model, ac-
curately predicted the averaged solvation time but not the shape
of S(t), and they suggested that it would be useful to have higher
frequency dielectric data included. Their suggestion is indeed
confirmed by our present calculation.
We used a spline fit for the discrete data ofε(ω). Thereby,

there were no adjustable parameters and a direct connection was
made betweenε(ω) andS(t). Any analytical model that provides
a reasonably good description of theε(ω) spectrum would of
course give essentially the sameS(t). However, we believe that
directly using the experimental dielectric dispersion data with
a simple continuum model provides a transparent way of
introducing the solvation dynamics, especially for the possible
cases where model dielectric theories do not provide a satisfac-
tory description ofε(ω).
The model used in Figure 1 is the dipole in a spherical cavity

in a solvent dielectric continuum, while that used in Figure 2 is
the ellipsoid with a homogeneous dipole density. The rate of
decay ofS(t) with t for the latter is slightly faster than that for
the former. There is seen to be little effect of changing the
shape of solute from a sphere to an ellipsoid. Results (not
shown) were also obtained for theS(t) when the dipole is
replaced by a single charge. In that case, the solvent response

r(ω) in eq 14 is replaced by 1- 1/ε(ω). One then finds that
the results in Figure 2 for the ellipsoid filled with a uniform
dipole density lie between those for the dipole in a sphere in
Figure 1 and those for a charge in a sphere. This result is not
unexpected, since the ellipsoid filled with a homogeneous dipole
density that is parallel to the long axis has net charges distributed
at the surface at both ends of the long axis. The latter would
behave more or less like two not quite separated regions of
charge density and would be intermediate between a charge and
a point dipole in its behavior.
In the results of the present calculation, the small peaks of

recurrence in Figures 1 and 2 show a “reversibility” of the
motion, with the shortest period being about 44 fs, which
corresponds to roughly 760 cm-1 in frequency. The absorption
band in that region has been assigned to a “libration”, namely,
oscillation of the water molecule in the force field of its
neighbors.25 The other bands with higher frequencies inε(ω)
do not yield any significant recurrence from the rapid initial
decay ofS(t), due to their contribution toε(ω) being very small
and, to a lesser extent, due to the 1/ω factor in the integrand.
Thereby, these resonance bands contribute only a small portion
of the rapid initial decay (cf. Figure 3). Nandiet al.17 pointed
out the importance of the intermolecular O‚‚‚O stretching mode,
which constitutes the 193 cm-1 band inε(ω) and corresponds
to 170 fs as its recurrence period. In Figure 3 there is a small
shoulder located between 150 and 200 cm-1 arising from such
motion. In Figures 1 and 2, the (broader) recurrence peak at
about 0.2 ps can be regarded as a mixed result of this lower
frequency band and the librational motion, and the rate of decay
is seen to slow down at this region, for both the experimental
and the calculatedS(t).
A molecular dynamics (MD) simulation of rigid water showed

a similar pattern of recurrence inS(t)7 and supports the idea
that the principal reversible mode is intermolecular. In that MD
work the amount of initial decay is, out of the total calculated
S(t), roughly 10% less than our result in Figure 1. Part of this
difference may arise from the effect of the rapidly dephased
intramolecular modes of water, which occurs in our calcula-
tion: It includes all dispersive contributions, unlike the MD
result, since a rigid model for the individual water molecules
was used in the latter. Both the MD study and the present result
show the importance of including the moderately high frequency
intermolecular components of thet dielectric response spectrum
on the dynamics in sub-picosecond time scale, in addition to
including the Debye region.
In Figures 1 and 2 it is seen thatS(t) for an oblate ellipsoid

with its dipole “lying” in the plane of the molecule decays only

Figure 1. CalculatedS(t) (solid line) for a dipole in a sphere using eq
25. The dashed line depicts the experimental result from ref 7. The
latter is a fit to their experimental data with one narrow Gaussian and
two exponential functions.

Figure 2. CalculatedS(t) (solid line) for a model of an ellipsoid solute
using eqs 26 and 29. The ellipsoid hasa:b:c ) 0.4:1:1 with the dipole
moment lying on theb or c axis. The dashed line is the experimental
result, which is the same as that in Figure 1.

Figure 3. Imaginary part of the quantity [(ε(ω) - 1)/(2ε(ω) + 1)]/ω
which is proportional to the term that is cosine transformed in eq 25,
for the dipole in a sphere cavity. Circles denote the data points
calculated from experimentalε(ω). The zero-frequency limit of this
quantity, estimated from the Debye formula (eq 31), is-0.073 ps rad-1.
It is seen that the contribution of the intramolecular vibrational bands
is quite small compared to that of the librational mode at about 800
cm-1. The units of the ordinate are ps rad-1.
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slightly faster than it does for a sphere. Recalling that the sphere
model also applied to a homogeneous dipole density model,
we also see in this comparison that the molecular shape affects
S(t) only a little, within the approximation of using a dielectric
continuum. For a more complete description of the solvation
dynamics, in addition to satisfying the boundary condition at
the solute-solvent interface, the spatial dependence of the
dielectric constant11,36would also be taken into account.
When the smooth decay of our theoretically calculatedS(t)

after 0.5 ps is fitted by an exponential function, the results in
Figure 1 correspond to a lifetime of 810 fs. This number agrees
well with the slowest exponential component in ref 7 obtained
by fitting to the experimental data, namely, 880 fs. On the other
hand, the Debye model (eq 31) describes a single-exponential
relaxation process: For the sphere cavity model, the relaxation
time for S(t) obtained from the Debye formula isτD(2εi + 1)/
(2εs + 1) (e.g., ref 31), which is 490 fs. The Debye model is
a good description ofε(ω) for ω ) 0 to about 3.0× 1011 rad
s-1. For frequencies higher than that, the measuredε(ω) begins
to deviate from Debye’s formula. Thereby, a decay occurring
according to the Debye formula is expected to occur only after
3 ps. The current lifetime fit fort ) 0.5-2 ps is not, we have
just seen, the Debye 490 fs and represents a mixed result from
both the Debye model and the spline fit of dielectric dispersion
for higher frequencies.

4. Conclusion

The solvation correlation function can be calculated by
including the entire spectrum of dielectric dispersion dataε(ω)
up to the optical region. Using simple dielectric continuum
models that neglect the molecular property of the solvent, our
results show that the correlation function obtained gives a
reasonable description for the time-dependent Stokes shift
measurement.
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Appendix A: Analysis for Equation 24

Equation 24 can be rewritten as

whereC denotes a contour that is parallel but slightly below
the real axis. The second of the integrals in eq A2 can be
shown, using the residue theorem, to equal 2πr̃(0) θ(t). We
note thatr̃(z) is analytic on the real axis,33 and r̃(z)0) is a real
number.32 The integrand in the first integral does not possess
a pole atz ) 0, since

and dr̃(z)/dz has no singularity atz ) 0. We may therefore
allow the contourC for the first integral in eq A2 to coincide
with the real axis. Denoting the real and imaginary part ofr̃(ω)

by r̃′(ω) and r̃′′(ω), respectively, i.e.,r̃(ω) ) r̃′(ω) + i r̃′′(ω),
and noting thatr̃(-ω) ) r̃*(ω), which follows becauser(t) is
real, we then find

Therefore, eq A2 yields

Another useful property is obtained by noting that∆E(t) ) 0
for t < 0 (eq 21). The first integrand in eq A5 is an even
function of t, while the second is an odd function. Since the
sum of them yields zero for negativet, they must be equal for
positive t. Thus, the calculation for∆E(t) can be performed
by integrating either of the two terms in eq A5. In the present
work, the first term was used becauser′′(ω) goes to zero asω
goes to the optical limit in an integration region, and so it is
numerically easier to calculate. We can write

which yields eq 25.
The second term of eq (A5) can be better evaluated, if desired,

as follows,

The first term now has a finite range ofω and so is numerically
easier to calculate than the left-hand side of eq A7.

Appendix B: Remark on the Optical Response
Contribution

At time t ) 0, the first term in eq A6 would formally become

Equation B1 follows from the Kramers-Kronig relationship37,38
when the upper limit is really+∞ (and notωop). Equation A5
then gives∆E(0) ) 0. However, practically the integration is
cut off at a frequency (ωop) in the range between the response
arising from nuclear motions (0< ω < ων) and the electronic
polarization (ωel < ω < ∞). Because of the large separation
of the two frequency regions (e.g.ων ≈ 103 cm-1 while ωel ≈
105 cm-1), the r̃′′(ω) from the fast electronic polarization gives
approximately a constant contributionrop to r̃′(ω) over the lower
frequency region (0< ω < ων).38 That constant can be obtained
from the Kramers-Kronig relation:

∆E(t) ) - ∆µ2

2π∫Cdzr̃(z)iz eizt (A1)

) - ∆µ2

2π∫Cdzr̃(z) - r̃(0)
iz

eizt - ∆µ2

2π∫Cdzr̃(0)iz eizt (A2)

r̃(z) - r̃(0)
z

) [dr̃(z)dz ]z)0 + O(z), zf 0 (A3)

∫Cdzr̃(z) - r̃(0)
iz

eizt ) 2∫0∞dω
r̃′′(ω)

ω
cosωt +

2∫0∞dω
r̃′(ω) - rs

ω
sinωt (A4)

∆E(t) ) - ∆µ2

π [∫0∞dω
r̃′′(ω)

ω
cosωt +

∫0∞dω
r̃′(ω) - rs

ω
sinωt + πrsθ(t)] (A5)

∆E(t) ) - 2∆µ2

π ∫0∞dω
r̃′′(ω)

ω
cosωt - ∆µ2rs, for t g 0

(A6)

∫0∞dω
r̃′(ω) - rs

ω
sinωt )∫0∞dω

r̃′(ω) - rop
ω

sinωt +

∫0∞dω
rop - rs

ω
sinωt (A7)

)∫0∞dω
r̃′(ω) - rop

ω
sinωt + π(θ(t) - 1

2)(rop - rs) (A8)

- 2∆µ2

π ∫0∞dω
r̃′′(ω)

ω
) ∆µ2r̃′(0)) ∆µ2rs (B1)
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whereP denotes the principal part of and where it has been
assumed that there is negligible absorption in the frequency
interval (ων,ωel), sor̃′′(ω) is practically zero there. In obtaining
eq B3, the large separation of the two frequency regions in the
integrations allows us to assumeων , ωop , ωel, and soωop

2

andω2 dominate in the denominators of the first and second
integrals, respectively, in eq B2).
If the upper limit in eq B1 were replaced byωop, it would

become

where we have used eqs B1 and B3.
Thus, in∆E(t), there is expected to be an initial drop that is

faster than the time resolution set by this cutoff frequencyωop,
due to the electronic polarization:

We see from the above equation that when the∆E(t) is
calculated usingωop instead of∞ in eq (A6) as the upper limit
of integration, the∆E(t) starts from a value∆E(0+) that arises
from the electronic polarization.∆E(t) eventually goes to a
static interaction energy,∆E(tf+∞), which equals-∆µ2rs (eq
A6). Thus, the changes in∆E(t) after the initial brief time
interval, 0+, describe the solvational energy that arises from
the nuclear response of the solvent.
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(38) Böttcher, C. J. F.; Bordewijk P.Theory of Electric Polarization;
Elsevier: Amsterdam, 1973; Vol. 2.

(39) Loring, R. F.; Yan, Y. J.; Mukamel S.J. Chem. Phys.1987,87,
5840.

(40) van der Zwan, G.; Hynes, J. T.J. Phys. Chem.1985,89, 4181.
(41) Neumann, M.J. Chem. Phys.1986,85, 1567.

rop ) r̃′(ωop) ) 2
π
P∫0∞dω

ωr̃′′(ω)
ωop

2 - ω2

=
2
π[∫0ωνdω

ωr̃′′(ω)
ωop

2 - ω2
+∫ωel

∞
dω

ωr̃′′(ω)
ωop

2 - ω2] (B2)

= 0- 2
π∫ωel

∞
dω

r̃′′(ω)
ω

= - 2
π∫ωop

∞
dω

r̃′′(ω)
ω

(B3)

- 2∆µ2

π ∫0ωopdω
r̃′′(ω)

ω
) - 2∆µ2

π (∫0∞dω
r̃′′(ω)

ω
-

∫ωop

∞
dω

r̃′′(ω)
ω ) ) ∆µ2(rs - rop) (B4)

∆E(t)0+) ) -∆µ2rop (B5)

Time-Dependent Stokes Shift J. Phys. Chem. B, Vol. 101, No. 14, 19972551


