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ABSTRACT: An extended Debye−Hückel theory with fourth order gradient term is
developed for electrolyte solutions; namely, the electric potential φ(r) of the bulk
electrolyte solution can be described by ∇2φ(r) = κ2φ(r) + LQ

2∇4φ(r), where the
parameters κ and LQ are chosen to reproduce the first two roots of the dielectric response
function of the bulk solution. Three boundary conditions for solving the electric potential
problem are proposed based upon the continuity conditions of involving functions at the
dielectric boundary, with which a boundary element method for the electric potential of a
solute with a general geometrical shape and charge distribution is derived. Solutions for
the electric potential of a spherical ion and a diatomic molecule are found and used to
calculate their electrostatic solvation energies. The validity of the theory is successfully
demonstrated when applied to binary as well as multicomponent primitive models of
electrolyte solutions.

1. INTRODUCTION

Mean field theories for electrolyte solutions or ionic fluids in
general have been widely used in solvation and crystallization
processes,1−4 surface tension calculations,5−8 and electron
transfer processes.9−12 A major challenge in the theory of
electrolyte solutions is to answer how an electrolyte solution is
polarized by a charged solute. Nowadays it is well-known that
an ion is perfectly screened by the electrolyte solution as
indicated by the Debye−Hückel (DH) theory.13 The DH
response equation for the electric potential φ(r), which is also
known as linearized Poisson−Boltzmann equation, reads
∇2φ(r) = κD

2φ(r), where κD is the inverse Debye length and
∇2 the Laplacian. According to the DH theory, the electric
potential of a point charge satisfies the Yukawa form as

r( ) q e
rs

Dr

φ = ϵ

κ−

. One important feature of the DH theory is the

existence of a boundary element method for a solute with
general geometry and charge distribution, which can reduce
the original three-dimensional electric potential problem to a
two-dimensional electric potential problem on the molecular
surface.14−16 Such a property renders the DH theory especially
useful for studying the electrostatic interaction between
complex biomolecules in an electrolyte solution.17−20 On the
other hand, the linearization of the Poisson−Boltzmann
equation relies on the weak coupling assumption; hence, the
application of the DH theory is limited to dilute electrolyte
solutions.20,21

There are various efforts to understand the screening effect
of electrolyte solutions and why the DH theory fails for

concentrated electrolyte solutions. According to the rigorous
analysis from statistical mechanics, the electric potential of an
ion undergoes a transition from simple exponential decay to
oscillatory decay as the electrostatic coupling of the solution
varies from weak to strong.22−25 Such an effect is known to
originate from the competition between the local packing
effect and the long ranged Coulomb interaction.26−28 Kjel-
lander and co-workers developed a dressed ion theory based
on a rigorous charge renormalization process of the Poisson−
Boltzmann equation, where the electric potential can be casted
i n t o a D H - l i k e f o r m

˜ ˜ ˜Br r r r r r( ) ( ) ( ) d ( )2 4 0
0

∫φ φ ρ∇ = | − | + π
ϵ , where B(r) is a

local response function of the bulk solution and ρ0(r) is an
effective charge density of the solute.29−31 Such a result can
also be obtained from the dispersion relations of Maxwell
equations32,33 with a microscopic model of electrolyte
solutions. In the dilute limit, the dressed ion theory reduces
to the DH theory as ρ0(r) = qδ(r) and B(r) = κ2δ(r).
According to the asymptotic analysis, the dressed ion theory
leads to multi-Yukawa electric potentials for concentrated
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electrolyte solutions, namely, r( ) l
q

r

el
klr

l
φ ∼ ∑

*

ϵ

−

, where ql* is a

renormalized charge, ϵl is an effective dielectric constant. The
decay parameters {kl} are determined by the roots of the bulk
dielectric function and become complex numbers in the strong
coupling regime; hence, the oscillatory decaying potentials are
naturally recovered. In practical applications, the decay
parameters of the electric potential in electrolyte solutions
can be derived from the theory of electrolyte solutions29,34−37

or measured from experiments,38,39 and hence, they can be
used to evaluate thermodynamic properties.
As a single Yukawa potential is the solution of the DH

response equation, a multi-Yukawa potential from rigorous
analysis motivates us to build a multi-DH response theory for
concentrated electrolyte solutions. In our previous work,33 the
molecular DH theory is developed for various models of
electrolyte solutions, where the electric potential φ(r) of an ion
splits into a linear combination of individual modes, i.e., φ(r) =
∑lBlφl(r) and ∇2φl(r) = kl

2φl(r) in bulk electrolyte solutions.
The linear coefficients {Bl} can be determined in a self-
consistent way to reproduce the dielectric response function of
the pure solvent. Such a prescription has been applied
successfully to various ionic fluids.40−44 As the molecular
DH theory is mainly developed for spherical ions, it remains an
open question how to deal with solutes beyond spherical
geometry.
In this paper, we developed an extended Debye−Hückel

(EDH) theory which not only leads to multi-Yukawa potential
for spherical ions but also can be easily applied to solutes with
arbitrary geometry and charge distribution using the boundary
element method. Specifically, a fourth order gradient term
LQ

2∇4φ(r) is introduced to the dielectric response equation,
which will have two Debye screening lengths as a first step to a
general solution with more Debye screening lengths in a
straightforward manner. In order to uniquely determine the
electric potential, three boundary conditions are required, and
the corresponding boundary element method is developed.
Our theory leads to analytical electric potentials as well as
electrostatic solvation energies for a spherical ion and a
diatomic molecule solute, and it is tested successfully against
the mean spherical approximation (MSA) theory, the hyper-
netted chain (HNC) theory, and molecular dynamics (MD)
simulations of electrolyte solutions.
It should be emphasized that the goal of this work is not to

develop a self-consistent theory of electrolyte solutions, a
worthwhile endeavor itself, but rather to extend the
applicability of the widely used boundary element method of
electrostatics in biophysics to moderately coupled electrolyte
solutions.
This paper is organized as following: in section 2, the EDH

theory of electrolyte solutions is formulated. The excess
thermodynamic properties for electrolyte solutions are also
discussed. In section 3, the EDH theory is applied to
electrolyte solutions where direct comparisons with the MSA
theory, the HNC theory, and MD simulations demonstrate the
accuracy of our theory. Some concluding remarks are given in
section 4.

2. THEORY
2.1. Model Description of the Primitive Model of

Electrolyte Solutions. The restricted primitive model of an
electrolyte solution is taken as a mixture of ions with additive
hard spheres where a point charge at the center is immersed in

a dielectric continuum. Cations and anions of the solvent have
the same diameter σs and the same absolute charge qs. In the
field of physical chemistry, the concept of solvent is widely
used to represent the polar species of the solutions. As the
polar species are not considered explicitly in the restricted
primitive model; hereafter, the electrolyte solution itself is
taken as the solvent and a tagged molecule is taken as a solute.
Denote kB as the Boltzmann constant, T as the temperature, ns
as the total particle number density, and ϵs as the dielectric
constant of the dielectric continuum, and the reduced inverse

temperature is
k T

1

B
β = , the Debye parameter is D

n q4 s s

s

2

κ = πβ

ϵ
.

A molecular solute with N sites is described by an
interaction site model, where a site j is a sphere with diameter
σj and carries a point charge qj at point rj. Ω1 is the volume of
the solute, Ω2 is the volume outside the solute, and Σ is the
molecular surface.

2.2. An Extended Debye−Hückel(EDH) Dielectric
Response Model and Boundary Conditions. In general,
the dielectric function of a solvent can have many Debye
screening lengths,29,33 but as a first step to develop a full theory
of their dielectric response, we concentrate on the two Debye
screening lengths case, which is equivalent to a mixture of ions
with quadrupole response.45 Let ϕ(r) be the electric potential
in a solute, where r ∈Ω1, and ψ(r) be the electric potential
outside the solute, where r ∈Ω2, and then we have

r r r( )
4

( ),
s

b2
1ϕ π ρ∇ = −

ϵ
∈ Ω

(1)

Lr r r r( ) ( ) ( ),Q
2 2 2 4

2ψ κ ψ ψ∇ = + ∇ ∈ Ω (2)

where ρb(r) = ∑j=1
N qjδ

(3)(r − rj) is the bare charge density of
the solute. κ is an effective Debye parameter, and LQ is a length
scale related to the quadruple effect. In the limit LQ = 0, the
dielectric response equation reduces to the conventional DH
equation.
In order to determine the electric potential problem with

fourth order gradient term, three boundary conditions are
needed. However, as there is no unique choice for these
boundary conditions, different researchers used different
recipes45−49 with various physical arguments. On the other
hand, these boundary conditions can be stated mathematically
using the continuity of functions across the boundary as
pointed out in Stakgold’s book,50 which reflects physical
conservation laws. In general, there are four possible boundary

conditions, which are related to the continuity of ψ(r),
n

r( )ψ∂
∂

,

∇2ψ(r), and
n

r( )2 ψ∂ ∇
∂

, where n is the outward unit normal to Σ
at r. However, only three boundary conditions are necessary to
determine the electric potential problem due to the lack of
fourth order gradient term inside the solute. In our

formulation, the continuity of ψ(r),
n

r( )ψ∂
∂

, and
n

r( )2 ψ∂ ∇
∂

are

used as boundary conditions. Let r0 be a point on the
molecular surface Σ, and then the boundary conditions read

r rlim ( ) lim ( )
r r r r0 0

ψ ϕ=
→ → (3)

n n
r r

lim
( )

lim
( )

r r r r0 0

ψ ϕ∂
∂

= ∂
∂→ → (4)
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n n
r r

lim
( )

lim
( )

r r r r

2 2

0 0

ψ ϕ∂∇
∂

= ∂∇
∂→ → (5)

The first two boundary conditions are the same as the ones
widely used in the DH theory. It is noted that eq 4 is valid for
the interaction site model, where no surface charge density is
present. If there is a surface charge σ(r0) on the molecular
s u r f a c e , t h e n e q 4 s h o u l d b e mod i fi e d a s

lim lim
n nr r

r
r r

r r( ) ( ) 4 ( )

s0 0

0= −ψ ϕ πσ
→

∂
∂ →

∂
∂ ϵ . One may note that it

is also possible to replace eq 5 by the continuity of ∇2φ(r) as
the third boundary conditions. Note that ∇2ψ(r) is linearly
related to the induced charge density which is known to be
discontinuous on the molecular surface due to the hard sphere
interactions. Our numerical results also show that the
electrostatic energies for spherical ions from this route are
not accurate. To this end, the continuity of ∇2φ(r) is not
suggested as a good choice for the third boundary condition.
2.3. Integral Equations for the Boundary Element

Method. In this part, we use Juffer et al.’s prescription14 to
formulate a boundary element method for systems described
by eqs 1 and 2. The main idea of the boundary element
method is to reduce the original three-dimensional electric
potential problem to a two-dimensional electric potential
problem on the molecular surface. In the following we only
show the main results and the details are presented in the
Appendices.

Define F r s( ; )
r s
1

s
= ϵ | − |

and P Cr s( ; ) l l
e

r s1,2

kl

s

r s

= ∑ = ϵ | − |

− | − |
,

k
L

L1,2
(1 1 4 ) / 2Q

Q

2 2

=
κ∓ −

, and C k k
k k1,2

1
2

2
2

2
2

1
2= ± +

−
, where k1, k2

are from the first two roots of the bulk solvent dielectric
function. The main working equations read

Ä

Ç

ÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑ
F

n
F

n
S

q F

r
r r

r
r

r r

r r

( )
2

( ; )
( )

( )
( ; )

d

( ; )
j

N

j j

0
0

0

1
0

∮

∑

ψ ψ ψ= ∂
∂

−
∂

∂

+

Σ

= (6)
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P
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r
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r
r
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r r
r

r
r r

r
r r

( )
2

( ; )
( )

( )
( ; )

d

( ; )
( )

( )
( ; )

( )
( ; )

d ,

Q

0
0

0

2 2
0

2
0

0

∮

∮

ψ ψ ψ

ψ ψ

ψ

= − ∂
∂

+
∂

∂

+ ∇ ∂
∂

−
∂∇

∂

−
∂

∂

Σ

Σ

(7)
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r r

( )
2

( )
( ; )

( ; )
( )

( )
( ; )

dQ

2
0 2 0

0

2 2
2

0

∮ψ
κ ψ ψ

ψ

∇
=

∂
∂

− ∂
∂

− ∇
∂∇

∂

Σ

(8)

Equations 6, 7, and 8 are linear integral equations for three

variables ψ(r0), n
r( )0ψ∂

∂
, and ∇2ψ(r0). When the third boundary

condition eq 5 is replaced by other ones such as the continuity

of
n

r( )3

3
ψ∂
∂

as in ref 47 or the continuity of component Qnn of the

quadrupolarization tensor Q as in ref 45, it would be hard to
find a set of closed linear equations for the three functions

ψ(r0), n
r( )0ψ∂

∂
, and ∇2ψ(r0) due to the fact that it is nontrivial to

expand
n

r( )3

3
ψ∂ or Qnn as a linear combination of ψ(r0), n

r( )0ψ∂
∂

and

∇2ψ(r0). To this end, the boundary conditions used in this
study may be the simplest set that supports the boundary
element method.

In general, the three functions ψ(r0), n
r( )0ψ∂

∂
, and ∇2ψ(r0) can

be solved numerically for a solute with general geometry and
charge distribution using similar methodology as the conven-

tional boundary element method.14,20 When ψ(r0), n
r( )0ψ∂

∂
, and

∇2ψ(r0) are determined, one can use eq 27 and eq 29 of
Appendix A to evaluate the inside electric potential ϕ(r−) and
the outside electric potential ψ(r+). ϕ(r−) can be rewritten as

Ä

Ç

ÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑ
F

n
F

n
S

q F

r r r
r

r
r r

r r

( ) ( ; )
( )

( )
( ; )

d

( ; )
i

N

i i
1

∮

∑

ϕ ψ ψ= ∂
∂

− ∂
∂

+

−
Σ

−
−

=
−

(9)

The induced potential ϕj
ind at the site j of the solute reads
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r
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d
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i
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i i

j
j

r r
1

j

∮

∑ϕ ϕ

ψ ψ

≡ −

= ∂
∂

−
∂

∂

→ −
=

−

Σ

−

(10)

The excess electrostatic energy βue then can be evaluated as

u q
1
2e

j

N

j j
ind

1

∑β β ϕ=
= (11)

Note that the induced potential depends linearly on the
solute charge; hence, the electrostatic part of the excess
chemical potential βμe equals the excess electrostatic energy
βue,

33 i.e.,

ue eβμ β= (12)

2.4. A Prescription to Determine the Parameters of
the EDH Dielectric Response Model. As our current theory
needs the input parameters κ and LQ from a pure solvent’s
dielectric function, it is assumed that this information is known
from other sources such as experiments or other theoretical
calculations. For example, let ϵl(k) be the longitudinal
dielectric function of the pure solvent; the dielectric response
function k( ) 1

k( )l

0χ ≡ − ϵ
ϵ can be evaluated using radial

distribution functions gi j(r) of the pure solvent,Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑk q x n q q x x g k( ) ( )n

k i i i s i j i j i j ij
4

1,2
2

, 1,2
s

2χ = ∑ + ∑πβ
= = , w h e r e

gij(k) = ∫ e−ik·rgij(r) dr is the three-dimensional Fourier
transform of gij(r), q1,2 = ± qs, and x1,2

1
2

= for a restricted

primitive model of electrolyte solutions.33 When χ(k) of the
pure solvent is used as input, one can fit it to an empirical

function k( ) a k
k a k a kb a kb a( ) cos( ) sin( )

0
2

4
1

2
2 3 2

χ =
+ − + +

, and then the

poles k = ikn can be determined by solving k4 + (a1k
2 − a2)

cos(kb) + a3 sin(kb) + a2 = 0 numerically.40 κ and LQ are
chosen as
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k k
k k

L
k k

,
1

Q
1

2
2

2

1
2

2
2

1
2

2
2κ =

+
=

+ (13)

so that the bulk system can be approximately described by a
response function using k1,2 from eq 26. It is well-known that
k1,2 are two real numbers for weak electrostatic coupling and
become complex conjugated when the electrostatic coupling is
strong. It is easy to check that κ and LQ defined via eq 13 are
always real numbers. As will be shown in the next subsection,
such a choice could reproduce the same asymptotic electric
potential as our molecular DH theory with two Debye
modes.33

For a solute with a general geometrical shape and charge
distribution, one can use eqs 6, 7, and 8 to find the electric
potential on the surface and use eq 10 to find the induced
electric potential at each site, and then the electrostatic energy
is evaluated with eq 11. Naturally, the electric potential
problem can also be solved numerically by finite difference
using the corresponding differential equations, eqs 1 and 2, but
our focus of this work is on the development of the boundary
element method using integral equations, which may provide
certain advantages for some problems.
When the electrostatic coupling is very strong, a large

number of Debye lengths is necessary to capture the dielectric
response of an electrolyte solution.29,33 The nonlinear response
may also play an important role,51 but our general strategy is to
use multiple linear modes and suitable linear coefficients to
mimic the nonlinear effect. Although each mode is based on
the linear response, the linear coefficients could carry
information beyond the linear response. Such a strategy has
been applied in our previous study on the property of
electrolyte solutions.33 As long as the coefficient of each mode
is properly determined, our theory can lead to a good
description of both the electrostatic energy and the induced
charge density of the solvent ions. To this end, a theory with
multiple linear modes and refined linear coefficients could at
least partly capture the nonlinear effect. As our current EDH
theory is a linear theory which only uses two Debye lengths,
one can expect that our theory would fail for electrolyte
solutions with strong electrostatic coupling. One may also note
other shortcomings of our theory due to the simplicity of our
dielectric response model; for example, the application of our
theory to various systems led to results for B1,2 that violate the
Stillinger−Lovett second moment condition, or the electro-
static energy of the bulk system is less accurate than some
other theories of electrolyte solution.33,37,52

On the other hand, higher order gradient terms can be
included in our model in a straightforward manner. For
example, when terms such as ∇6ψ(r) and ∇8ψ(r) are added to
the dielectric response model, the electric potential will be a
combination of four Yukawa potentials. As long as the
extended Green’s theorems are used for the three-dimensional
integrals such as ∫ Ω2

dr [f(r)∇6g(r) − g(r)∇6f(r)] and ∫ Ω2
dr

[f(r)∇8g(r) − g(r)∇8f(r)], it would also be possible to derive
the corresponding integral equations for the boundary element
method. To this end, our study paves the way to extend the
DH theory in a systematic way by adding high order gradient
terms to represent the existence of various length scales in the
dielectric response.
2.5. Electrostatic Potential for a Spherical Ion: An

Example of Applications. As a demonstration of our current
approach, let us consider the electric potential problem of a

spherical ion, where analytical solution of the potential can be
found. Assume that the radius of the excluded sphere is a, and
a point charge q is located at the center of the sphere. Due to
the spherical symmetry, functions f(r) = ϕ(r), ψ(r), and
∇2ψ(r) depend only on the radius variable r = |r|, and the value
of f(r0) on the spherical surface is a constant.
After some straightforward but lengthy calculations, one can

find the solution of eqs 37, 38, and 39. The final results read
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ É

Ö

ÑÑÑÑÑÑÑÑÑÑ

r
q
r
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k
k k k a

( ) 1
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( )(1 )

s s
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2
2

1
2

1

1
2
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2

2
2

2
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ϵ

−
ϵ

−
− +

−
− + (14)
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r
q k

k k k a r

k
k k k a r

( )
( )

e
(1 )

( )
e

(1 )

s

k r a

k r a

2
2

2
2

1
2

( )

1

1
2

1
2

2
2

( )

2

1

2

ψ =
ϵ − +

+
− +

− −

− −

(15)

The interested readers could find more details in the
Appendices.
It is also possible to solve the electric potential using the

corresponding differential equations, eqs 1 and 2, if the
following test solution is used45

r
q
r

A r a( ) ,
s

ϕ =
ϵ

+ <
(16)

r
q B

k a r
r a( )

e
(1 )

,
s l

l
k r a

l1,2

( )l

∑ψ =
ϵ +

>
=

− −

(17)

One may note that the functional form of the above test
solutions depends on the property of eq 1 and eq 2 rather than
the boundary conditions; but different boundary conditions
will lead to different sets of A and B1,2

45−47 and thus different
solutions.
When the boundary conditions in eqs 3, 4, and 5 are used,

one can find that

A
q B k

k a1s l

l l

l1,2

∑= −
ϵ += (18)

B
k

k k1
2
2

2
2

1
2=

− (19)

B B
k

k k
12 1

1
2

1
2

2
2= − =

− (20)

It is easy to check that eqs 14 and 15 are the same as eqs 16
and 17, if eqs 18, 19, and 20 are used. It should be noted that
this solution has the same functional form as our molecular
Debye−Hückel theory with two Debye modes;33 hence, one
may view the EDH theory as a possible extension of our
molecular DH theory with a different way of determining the
linear combination coefficients of various Debye modes. Due
to the simplicity of our dielectric response model, the
coefficients of tagged solvent ions may not satisfy some
universal constraints such as the Stillinger−Lovett second
condition. Specifically, the Stilliger−Lovett condition leads to a
c o n s t r a i n t B 1 f ( k 1 ) + B 2 f ( k 2 ) = 1 w i t h
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+ + +
+ ,33 from which a different B1,2

can be found. It will be interesting to study possible boundary
conditions that could lead to a self-consistent theory of the
solvent without violating such universal constraints.
Using eq 11, the electrostatic energy βue of the ion reads
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(21)

3. RESULTS AND DISCUSSION
To demonstrate the validity of our EDH theory, we apply the
theory to electrolyte solutions with moderate electrostatic
coupling. Specifically, we test our theory against the mean
spherical approximation (MSA),53 hyper-netted chain (HNC)
approximation of electrolyte solutions, and a diatomic solute in
an electrolyte solution where the excess internal energy βue and
the electrostatic part of the excess chemical potential βμe are
known. As we focus on the electrostatic effect, we will only
compare the electrostatic energy. It is shown that our EDH
model is capable of predicting the electrostatic energy
accurately even if the electrostatic coupling is moderate.
3.1. Tests against the Mean Spherical Approximation

of Electrolyte Solutions. As the first test case, we consider
the mean spherical approximation(MSA)53 for primitive
models, which leads to analytical results for the dielectric
function, excess energy and other excess thermodynamic
properties. The MSA theory is used as input to evaluate the
response function χ(k), from which one can find k1,2. As the
electrostatic part of the excess chemical potential βμe equals
the electrostatic energy βue according to the MSA theory, we
will only show the results for the electrostatic energy.
First, we consider the electrostatic energy of a pure solvent,

namely a two-component electrolyte solution with parameters
qs = 1, ϵs = 1, σs = 1, and β = 4. The Debye parameter is

evaluated as D
n q4 s s

s

2

κ = πβ

ϵ
, where ns is the total particle

number density. Within the MSA theory, all the electrostatic
contribution to the thermodynamic properties of the system
depends on the dimensionless reduced Debye parameter KD ≡
κDσs. For 0.0002 < ns < 1.0, we found 0.100 < KD < 7.09. The
electrostatic energies βue of the solvent species as a function of
the Debye parameter KD are shown in Figure 1. As one can see,
the EDH theory is in very good agreement with the MSA
theory as long as the electrostatic coupling is not too strong;
namely, in the tested range of 0.1 ≤ KD ≤ 7.0, the relative
energy difference between the EDH theory and the MSA
theory is less than 7%. As a comparison, the results from the
conventional DH theory are also shown. DH is not reliable for
electrolyte solutions with strong electrostatic coupling, where
the difference between the DH theory and MSA can be as large
as 26% for the system at KD = 7.0.
Second, we tested the electrostatic energy βue for solutes

with various sizes when the electrostatic coupling is moderate.
The solvent is a binary electrolyte with q1,2 = ±1, ϵs = 1, σ1,2 =
1, and β = 4. The solute charge q is fixed at q = 1 and the
solute−solvent size ratio o

s
γ = σ

σ
is used as a control parameter.

The radius of the excluded sphere of the solute ion reads

a
2

s o= σ σ+
. For the test case with KD = 2.0, it is found that k1,2 =

1.8870 ± 1.8876i. The electrostatic energies for 0.2 ≤ γ ≤ 10
are shown in Figure 2a. In this case, the energy difference
between the EDH theory and the MSA theory is about 1 to

Figure 1. Electrostatic energy βue for pure solvents with various KD.
The results from MSA are denoted by filled circles, while our EDH
theory and the DH theory are denoted by hollow diamonds and
hollow stars. The lines are guides to the eye.

Figure 2. Electrostatic energy βue as a function of the solute−solvent
size ratio o

s
γ = σ

σ under two solvent conditions. The results from MSA

are denoted by filled circles, while our EDH theory and the DH
theory are denoted by hollow diamonds and hollow stars. The lines
are guides to the eye.
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4%, while the energy difference between the DH theory and
the MSA theory is about 3 to 17%. For the test case with KD =
5.0, it is found that k1,2 = 1.1570 ± 3.1426i. The electrostatic
energies for 0.2 ≤ γ ≤ 10 are shown in Figure 2b. The energy
difference between the EDH theory and the MSA theory is
about 2 to 4%, while the energy difference between the DH
theory and the MSA theory is about 5 to 34%. Thus, one can
see that our EDH theory works much better than the DH
theory when compared with the MSA theory. For other
conditions where the Debye parameter is not too large, similar
results are found and are not shown here.
3.2. Test against the HNC Theory of Electrolyte

Solutions. In this part, we present the test of our theory
against the HNC approximation, which is known to yield very
accurate thermodynamic properties of primitive models.53 The
HNC theory is used as input to evaluate the response function
χ(k) and from which one can find k1,2. According to our
previous study on the HNC theory,33 the electrostatic part of
the excess chemical potential βμe is in good agreement with the
electrostatic energy βue, where the typical energy difference is
about 1% as long as the electrostatic coupling is not too strong.
So in the following part, we will not show the results for
chemical potentials.
First, we consider the electrostatic energy of a pure solvent.

The parameters used for a binary electrolyte solvent are qs = 1,
ϵs = 1, σs = 1, and β = 2. We take the Debye parameter as the
control parameter. For 0.005 ≤ ns ≤ 0.8, it is found that 0.354
≤ KD ≡ kDσs ≤ 4.484. The electrostatic energies βue for the
solvent species are shown in Figure 3. Again, good agreement

between our EDH theory and the HNC theory is found. The
EDH theory differs from the HNC theory by 6% and 9% at
reduced Debye parameter KD = 3.171 and KD = 4.484, while
the DH theory overestimates the electrostatic energy by about
21% and 28% at KD = 3.171 and KD = 4.484.
Second, we consider the electrostatic energy of a solute with

tunable sizes. The solvent parameters are fixed at q1,2 = ± 1, ϵs
= 1, β = 2, and σ1,2 = σs = 1. The solute charge is fixed at q = 1,
and the solute−solvent size ratio o

s
γ = σ

σ
is used as a control

parameter. For the test case with ns = 0.2, where KD = 2.242, it
is found that k1,2 = 1.9679 ± 2.1439i. The electrostatic energies
for 0.2 ≤ γ ≤ 8 are shown in Figure 4a. The energy difference
between the EDH theory and the HNC theory is about 1−7%,

while the energy difference between the DH theory and the
HNC theory is about 5−21%. For the test case with ns = 0.7,
where KD = 4.194, it is found that k1,2 = 1.6040 ± 3.3280i. The
electrostatic energies for 0.2 ≤ γ ≤ 7 are shown in Figure 4b.
The energy difference between the EDH theory and the HNC
theory is about 2−10%, while the energy difference between
the DH theory and the HNC theory is about 9−31%. Again,
our EDH theory shows a significant improvement over the DH
theory. Our EDH theory is also tested for other conditions. As
long as the reduced Debye parameter KD and the solvent−
solute size ratio are not too large, the EDH theory leads to
satisfactory results compared with the HNC theory and is not
shown. It is worth pointing out that KD = 4.0 is equivalent to a
8.4 M NaCl aqueous solution at room temperature, where the
solvent parameters used are σs = 4.2 Å, ϵr = 78.5, and T = 300
K.

3.3. Test against Molecular Dynamics Simulations of
Electrolyte Solutions. In order to show that our theory is
applicable to solutes beyond the spherical geometry, we
consider the electrostatic energy of a diatomic solute in a
binary electrolyte solution. Denote i = 1, 2 as the cation and
anion species of the binary electrolyte solvent. The charges of
cations and anions are q1,2 = ±e0, with e0 being the element
charge, the temperature of the system is T = 300 K, the
permittivity of vacuum is ϵ0, the relative dielectric constant of
the back ground is ϵr = 78, and the total particle number
density is ns = 0.007226 Å−3. Such a system is used to mimic a

Figure 3. Excess electrostatic energies βue for pure solvent with
various KD = κDσs. The results from HNC are denoted by filled circles,
while our EDH theory and the DH theory are denoted by hollow
diamonds and hollow stars. The lines are guides to the eye.

Figure 4. Electrostatic energies βue as a function of the solute−solvent
size ratio o

s
γ = σ

σ under two solvent conditions. The results from HNC

are denoted by filled circles, while our EDH theory and the DH
theory are denoted by hollow diamonds and hollow stars. The lines
are guides to the eye.
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NaCl aqueous solution with salt concentration c0 = 6.00 mol/
L. The Debye parameter of the solution is approximately κD =
0.805 Å−1. The nonelectrostatic interaction between the
solvent ions is a Lennard-Jones (LJ) potent ia lÄ

Ç
ÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑ( ) ( )u r( ) 4s s r r

12 6
s s= ϵ −σ σ

. The solute is a tagged diatomic

molecule with two interaction sites denoted as j = 3 and 4,
where the charges of two sites are chosen to be q3 and q4. The
nonelectrostatic interaction between the solute site and solvent

ions reads
Ä

Ç
ÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑ( ) ( )u r( ) 4so so r r

12 6
so so= ϵ −σ σ

. The LJ parameters

used are σs = 3.5 Å, ϵs = 1 kJ/mol, σso = 3.5 Å, and ϵso = 1 kJ/
mol.
Molecular dynamics (MD) simulations are performed using

the DL-POLY program54 with an NVT ensemble consisting of
216 ions in a cubic box with length d = 31.0344Å. The time
step used in the simulation is Δt = 1.5 fs. The electrostatic
energies ue are calculated using the Ewald summation from
equilibrium configurations, where the typical numerical
uncertainty is below 0.04 kJ/mol for a total of 105

configuration. Using the radial distributions from the
simulations, the dielectric response function χ(k) is calculated,
and then the first two Debye parameters are found to be k1,2 =
0.5846 ± 0.7673i. The WCA prescription55,56 is used to find
the effective radius a of an ion or site, where
u r u r( ) ( )s

q q

r12
r

1 2

0
= + ϵ ϵ

is used to compute the effective radius

of the ions. The effective ion radius is found to be a = 3.367 Å
and is also used as the effective radius for each site of the
diatomic molecule. Using our EDH theory, it is found that B1,2
= 0.5 ± 0.1377i for the ions, and then the electrostatic energy
for the solvent reads ue = −2.26 kJ/mol, which differs from the
MD result ue = −2.41 kJ/mol by 6%, while the DH theory
leads to ue = −1.93 kJ/mol, which differs from the MD results
by 20%.
In order to find the electrostatic energy of the diatomic

solute, a total of 212 ions and two diatomic molecules are used
for MD simulations. Two solutes have the same LJ potential
but with opposite charge numbers so that the simulation box is
neutral. The site separation distance R between site 3 and 4 in
the diatomic solute is used as a control parameter. Each site of
the diatomic molecule is mapped to a charged hard sphere
with radius a and then the molecule is mapped to a union of
charged hard spheres. In the case of large separations with R >
a, a diatomic molecule is mapped to a system consisting of two
individual spheres, and then the electric potential could be
solved with a two-center test solution.40,57 In the case of small
separations with R < a, hard spheres of the molecule sites are
fused and then the diatomic molecules is dumbbell-shaped. As
the diatomic solutes have azimuthal symmetry, the electric
potential depends on the radial variable r and an angle variable
θ. When site 3 is set at the origin and site 4 is set at r = R and θ
= 0, one can use the one-center test solution

r
q

r
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r R Rr
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r r n

N

n n
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0
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0
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0
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θ

θ=
ϵ ϵ

+
ϵ ϵ + −

+
=

and ψ(r,θ) = ∑n=0
N [B1nkn(k1r)Pn(cos θ) + B2nkn(k2r)Pn(cos θ)]

to compute the electric potential, where Pn(x) is the Legendre
polynomial and kn(r) is the modified spherical Bessel function
of the third kind.40 When the three boundary conditions are
used, a set of linear equation for variables {An}, {B1n}, and
{B2n} can be derived and can be solved numerically. The test

solution method is also used to find the electric potential
solution of the DH theory. In this study, we focus on the case
of small separations with R ≤ 3 Å, where numerical calculation
shows that N = 9 leads to converged results. For the charge
distribution q3,4 = e0, 0, the results for ue in the range of 0.5 Å ≤
R ≤ 3 Å are shown in Figure 5a. As one can see, the

electrostatic energy of the solute only has a weak dependence
on the site separation distance R. The energy difference
between our EDH theory and the MD results is about 9%,
while the energy difference between the DH theory and the
MD results is about 22%. For the charge distribution q3,4 = e0,
− e0, the results for ue in the range of 0.5 Å ≤ R ≤ 3 Å are
shown in Figure 5b. In this case, the electrostatic energy of the
solute has a much stronger dependence on the site separation
distance R. The energy difference between our EDH theory
and the MD results is about 20%, while the energy difference
between the DH theory and the MD results is more than 40%.
In both cases, one can see that our EDH theory works much
better than the DH theory when applied to the diatomic
solutes.

4. CONCLUSIONS
In summary, an extended Debye−Hückel theory with fourth
order gradient term is developed for electrolyte solutions,
where appropriate three boundary conditions are introduced
based upon the continuity requirements of the involving

Figure 5. Excess electrostatic energies ue for a diatomic molecule with
various site separation distance R. The results from MD are denoted
by filled circles, while our EDH theory and the DH theory are
denoted by hollow diamonds and hollow stars. The lines are guides to
the eye.
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functions at the boundary. The integral equations for the
boundary element method are also derived, so that our theory
is applicable to a solute with general geometrical shapes and
charge distributions, but the numerical implementation will be
left for future work. The electric potential as well as the
electrostatic energy are obtained for spherical ions and
diatomic solutes where the validity of our theory is successfully
demonstrated for binary as well as multicomponent models of
electrolyte solutions.

■ APPENDICES

Appendix 1: Derivation of the Integral Equations for the
Boundary Element Method. In this part we use Juffer et al.’s
prescription14 to formulate a boundary element method for
systems described by eqs 1 and 2. For the Poisson equation

F r s r s( ; )
4

( )
s

2 (3)π δ∇ = −
ϵ

−
(22)

where δ(3)(r) is the Dirac delta function, one can find the
Green function

F r s
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s
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For a dielectric response equation with quadruple effect
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the Green function reads
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where the Debye parameters k1,2 and C1,2 read
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Using these two Green functions, F(r; s) and P(r; s), the
integral equations for the boundary element method can be
derived.
Denote r− as a point inside the solute, r+ as a point outside

the solute, and r0 as a point on the molecular surface.
Multiplying ϕ(r−) with eq 22 and subtracting F(r; r−) times eq
1, and using Green’s second theorem for scalar functionsÄ
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In order to find the integral equation for ψ(r), we use an
extended Green theorem for scalar functions f(r) and g(r),
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which can be viewed as generalized integration by parts.58

Multiplying ψ(r+) with eq 24 and subtracting P(r; r+) times eq
2 and use the extended Green theorem eq 28 on the volume
outside Σ, one can find that
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The integral equation for ∇2ψ(r) can also be found in a
similar way. Multiplying ∇2ψ(r) with eq 24, subtracting ∇2P(r;
r+) times eq 2, and using the Green theorem and the extended
Green theorem (eq 28) on the volume outside Σ, one can find
that
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In order to find a solution of the electric potential problem,
we need to find the electric potential on the molecular surface.
Using the properties of single layer and double layer integral,59

it is found that
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As the boundary conditions eqs 3, 4, and 5 reduce to
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eqs 31, 32, and 33 reduce to
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The above three equations are the main working equations

for the boundary element method. Once ψ(r0), n
r( )0ψ∂

∂
, and

∇2ψ(r0) are determined with eq 37, eq 38, and eq 39, one can
use eq 27 and eq 29 to evaluate the inside electric potential
ϕ(r−) and the outside electric potential ψ(r+).
Appendix 2: Derivation of the Electric Potential of a

Spherical Ion. We show how to find the solution of eq 37, eq
38, and eq 39 given the solute is a spherical ion. Due to the

spherical symmetry, we introduce ψ(r0) ≡ ψs, h
n s
r( )0 ≡ψ∂

∂
, and

∇2ψ(r0) ≡ us, and then eqs 37, 38, and 39 reduce to
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Using eqs 43, 44, and 45, one can use eqs 27 and 29 to
evaluate the electric potential ϕ(r) = ϕ(r) and ψ(r) = ψ(r).
After some straightforward but tedious calculations, the final
results read
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