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ABSTRACT
Homogeneous vapor-liquid nucleation is studied using the generalized Replica Exchange Method (gREM). The generalized ensemble allows
the study of unstable states that cannot directly be studied in the canonical ensemble. Along with replica exchange, this allows for efficient
sampling of the multiple states in a single simulation. Statistical Temperature Weighted Histogram Analysis Method is used for postprocessing
to get a continuous free energy curve from bulk vapor to bulk liquid. gREM allows the study of planar, cylindrical, and spherical interfaces
in a single simulation. The excess Gibbs free energy for the formation of a spherical liquid droplet in vapor for a Lennard-Jones system is
calculated from the free energy curve and compared against the umbrella sampling results. The nucleation free energy barrier obtained from
gREM is then used to calculate the nucleation rate without relying on any classification scheme for separating the vapor and liquid.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5116252., s

I. INTRODUCTION

Nucleation is generally the time limiting step in phase transi-
tions. Understanding the nucleation process is fundamental to our
understanding of a wide variety of problems ranging from protein
crystallization1 to atmospheric aerosols2 and gas foaming in poly-
mers.3 The free energy barrier separating the local minimum of the
metastable phase and the global minimum of the stable phase makes
nucleation an activated process.

While there have been attempts to study homogeneous nucle-
ation experimentally,4–6 getting reliable data has proven to be very
difficult.7 Any tiny impurity can become a nucleation site leading to
heterogeneous nucleation, compromising the reliability of the data.
In addition, only the nucleation rate can be measured experimen-
tally. Information about the structure and dynamics of the critical
nuclei cannot directly be measured since nucleation is a rare event,
and when nucleation does occur the system spends very little time
at the critical nuclei.8 Theoretical and computational methods pro-
vide an alternative path to studying homogeneous nucleation. One
of the earliest theoretical efforts to describe nucleation was the phe-
nomenological approach, Classical Nucleation Theory (CNT).9,10

According to CNT, two competing factors contribute to the

nucleation barrier: the difference in the chemical potential of the
two phases which drives the nucleation process and the interfacial
free energy cost which opposes nuclei formation. The main assump-
tions in CNT are that the droplet is an incompressible sphere, the
phase inside the droplet has the same properties as the bulk phase,
and the interfacial free energy is independent of the size or curva-
ture of the nucleus. Under these assumptions, the free energy of
formation of a nucleus, ΔG(T, R), at temperature T and radius R
is given by the competition between the chemical potential differ-
ence between the two phases and the free energy required to form an
interface,

ΔG(T, R) =
4
3
πR3ρΔμ(T) + 4πR2γ∞(T), (1)

where ρ is the bulk density of the stable phase, Δμ(T) = μ1(T)− μ2(T)
is the chemical potential difference between the two bulk phases,
and γ∞ is the interfacial free energy (surface tension for the liquid-
vapor case) of the planar interface at temperature T. Thus, in CNT,
the nucleation barrier can be obtained from the bulk phase prop-
erties and the planar surface free energy. This simplicity has led to
its popularization and it still remains in use, especially to correlate
experimental data.11
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The maximum of ΔG varying with the droplet size R gives the
nucleation barrier ΔG∗ for the formation of the critical nucleus. The
nucleation rate, J, is given by

J = K exp(−ΔG∗/kBT), (2)

where K is the kinetic prefactor, kB is the Boltzmann constant,
and T is the temperature. It is essential to have a good estimate
for the nucleation barrier, since a small error in ΔG∗ leads to an
exponential error in the nucleation rate. The many assumptions in
CNT lead to an overestimation of the nucleation free energy and an
underestimation of the critical nuclei size.12

There have been many attempts to get a better quantitative
description of nucleation by improving the approximations made
in CNT.13–15 The biggest source of error is due to the use of planar
surface tension in Eq. (1). The curvature dependence of surface ten-
sion has been extensively studied,16–20 and it has been established
that the surface tension of small droplets is often significantly differ-
ent from the planar value. Replacing the planar surface tension with
the curvature dependent one gives a quantitatively more accurate
nucleation free energy,

ΔG(T, R) =
4
3
πR3ρΔμ(T) + 4πR2γ(T, R), (3)

where γ(T, R) is the surface tension of a sphere of radius R at
temperature T. Evaluating the nucleation free energy barrier using
the above description still requires the knowledge of the difference
in chemical potential of the two phases and the curvature depen-
dent surface tension. These two quantities are most often obtained
through different methods requiring multiple simulations. More-
over, γ(T, R) is normally calculated from the mechanical route using
the normal and tangential pressure profiles, and it is well docu-
mented that the thermodynamic and the mechanical routes for cal-
culating the surface tension give different values for the spherical
interface.21,22

With the advent of computer power, simulations have become
more powerful and the nucleation free energy of droplets and the
nucleation rate of different sizes can now be accessed without rely-
ing on surface tension and chemical potential values. However, the
direct simulation of nucleus formation is still not very efficient. Since
nucleation is a rare event, the probability of seeing a nucleus form
at moderate supercooling is very low and when the nucleus does
form, it is difficult to obtain good statistics in the time scale available
in simulations.21,23 Rare event simulation techniques like umbrella
sampling,18,21,24–26 forward flux sampling,27,28 metadynamics,29 and
transition path sampling30 are usually employed to study nucleation.
ten Wolde and Frenkel1,21,31,32 were one of the first to apply umbrella
sampling33 to obtain the nucleation barrier. Umbrella sampling still
remains the most popular of the biasing techniques to study the
structure of droplets during nucleation. However, umbrella sam-
pling is a computationally expensive technique since one needs to
simulate several precritical and postcritical nuclei to obtain a single
nucleation barrier number.

An alternative to this is the generalized ensemble simula-
tions.34,35 While umbrella sampling33 involves applying a mechan-
ical bias so as to change the energy landscape such that a certain
region of interest is preferentially sampled, generalized ensemble
simulations study the same problem by changing the “sampling

weights” in the simulation to effectively sample the region of inter-
est in the energy landscape. Multicanonical Algorithm (MUCA)36,37

and simulated tempering38,39 simulation techniques which employ
non-Boltzmann sampling are the most well-known of the gen-
eralized ensemble methods. The non-Boltzmann sampling helps
overcome the broken ergodicity providing efficient sampling. Mul-
ticanonical algorithms perform a random walk in the energy land-
scape, whereas simulated tempering does a random walk in the
temperature space. These generalized ensemble methods have been
successfully applied to a variety of problems.36,40–42

The problem with both multicanonical and simulated tem-
pering methods though is that obtaining the sampling weights
requires a time-consuming iterative process. To overcome this prob-
lem, Kim et al.43,44 designed an algorithm, the generalized Replica
Exchange Method (gREM), which samples along a predefined effec-
tive temperature-energy relation. The weights are then obtained
from an inverse relationship with the effective temperature. They
employ this method with replica exchange to further enhance sam-
pling. The advantage of applying gREM to study the first order
phase transition is that multiple critical nuclei (of different shapes
and sizes) at different conditions can be observed in the differ-
ent replicas of the same simulation. This parallelization is a major
advantage over umbrella sampling where multiple simulations need
to be performed to get the free energy of a single critical nuclei.
gREM bears some similarity to the Successive Umbrella Sampling
(SUS) method of Virnau and co-workers.18,19,45,46 In SUS, the entire
region to be sampled is subdivided into small density windows
and umbrella sampling is applied in the grand canonical ensem-
ble to maintain the system in a certain density range. Probabil-
ity distribution obtained from this grand canonical simulation can
then be used for free energy calculations. Like gREM, SUS can also
simulate multiple nuclei in a single simulation. However, in the
case of SUS, the number of windows required to span the entire
phase transition region is strongly dependent on the size of the sys-
tem, since the particles’ increment from one window to the next
is about 10 particles,46 making simulation of large systems pro-
hibitively expensive. Also, being simulated in the grand canonical
ensemble restricts its applicability to Monte Carlo moves. gREM
has the advantage here that it can be run using Molecular Dynam-
ics (MD) and has been implemented in the popular LAMMPS
package.47,48

gREM has been applied to study the vapor-liquid transition and
found to predict the coexistence properties very well.49 Here, we use
gREM to study the nucleation free energy of a Lennard-Jones (LJ)
liquid nucleus forming in the vapor. The Lennard-Jones potential is
an important model potential that has been studied extensively in
the literature. gREM can be used to calculate not only the nucleation
free energy barrier but also the curvature dependent surface tension.
Once ΔG(T, R) is obtained, the curvature dependent surface tension
can be obtained from Eq. (3), since the chemical potential difference
between the phases required in Eq. (3) can also be calculated from
gREM.

Section II presents a brief overview of the theory of spher-
ical interfaces, the curvature dependent surface tension, and the
nucleation rate. This is followed by a discussion on the generalized
replica exchange method. In Sec. III, the details of the simulation
methodology is described, and Sec. IV presents and discusses the
results.
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II. THEORETICAL DEVELOPMENT
A. Spherical interface

The theory is written here specifically for a one-component
vapor-liquid system. The generalization of the concepts to multi-
component systems is straightforward. For a liquid droplet in the
vapor phase, the generalized Laplace equation relates the pressure
difference between the interior of the droplet Pl and the vapor
pressure Pv, Δp(T, R) = Pl − Pv, to the surface tension as50

Δp(T, R) =
2γ(T, R)

R
+
∂γ(T, R)

∂R
, (4)

where R is the size of the droplet and γ(T, R) is the surface ten-
sion of a droplet of size R at temperature T. The second term on
the right-hand side in the above equation is the partial derivative of
the curvature dependent surface tension with respect to the radius
of the droplet.

At the molecular level, the interface is a few molecular lay-
ers thick changing continuously from liquid to vapor. The “size” of
the spherical droplet is then somewhat arbitrarily defined. Two of
the most frequently used choices are the Gibbs equimolar dividing
surface and the surface of tension.50 The Gibbs equimolar dividing
surface (Re) is defined as the imaginary sharp interface which divides
the liquid and vapor region such that there are no excess particles.
The number of excess particles, Nx, is defined as

N = Nl + Nv + Nx, (5)

where N is the total number of particles, N l = ρlV l and Nv = ρvVv.
Here, ρl is the density inside the liquid sphere and ρv is the bulk
vapor density. V l and Vv are the liquid and vapor volumes, respec-
tively. The liquid volume is obtained from the dividing surface,
Vl = 4/3πR3

e , and the vapor volume is the difference between the
total volume and the liquid volume. The Gibbs equimolar dividing
surface can also be obtained from the density profile,16

R3
e =

1
(ρl − ρv)

∫ drr3 dρ(r)
dr

, (6)

where r is distance from the center of the liquid droplet and ρ(r) is
the density profile along the radial direction.

The surface of tension (Rs) is defined as the surface where the
surface tension varying with the distance from the center of the
droplet goes through a minimum, ∂γ

∂R ∣R=Rs

= 0. Setting the derivative

of the surface tension in Eq. (3) to zero gives

Rs =
⎛

⎝

3ΔG
2πρlΔμ

⎞

⎠

1/3

. (7)

Equation (4) reduces to the Laplace equation at the surface of
tension, Δp(T, Rs) = 2γs/Rs.

In the literature, both the Gibbs equimolar dividing surface
and the surface of tension have been used to define the “size” of
the nuclei. Here, we use Rs since it is the surface of tension that
coincides with the critical nuclei and not the Gibbs equimolar divid-
ing surface.19 The choice of the dividing surface does not change
the nucleation free energy barrier, but it does change the numerical
value of the curvature dependent surface tension.

B. Curvature dependence of surface tension
The curvature dependence of surface tension has been studied

extensively and is a matter of much debate.16–20 A quantity that is
often used in the literature to parameterize the curvature depen-
dence of the surface tension is the Tolman length.51 The Tolman
length, δ, is defined as the difference between the Gibbs equimolar
dividing surface and the surface of tension,

δ = Re − Rs. (8)

Tolman related this quantity to the adsorption at the surface of ten-
sion, Γs = Nx

s /(4πR2
s ). Here, Nx

s is the excess number of particles at
the surface of tension. At constant temperature, the Gibbs-Duhem
relation gives19,50

⎛

⎝

∂ ln γ
∂ ln Rs

⎞

⎠
T

=
2Γs

Rs(ρl − ρv)

⎛

⎝
1 +

2Γs

Rs(ρl − ρv)

⎞

⎠

−1

. (9)

Manipulating the expressions for adsorption at the surface of tension
and at the Gibbs equimolar dividing surface (which is equal to zero
by definition), one can find an expression for the adsorption at the
surface of tension as20

Γs

(ρl − ρv)
= δ
⎛

⎝
1 +

δ
Rs

+
1
3
δ2

R2
s

⎞

⎠
. (10)

Combining the above two expressions gives the Gibbs-Tolman-
Koenig-Buff (GTKB) equation,52

⎛

⎝

∂ ln γ
∂ ln Rs

⎞

⎠
T

=

2δ
Rs
(1 + δ

Rs
+ 1

3(
δ
Rs
)

2
)

1 + 2δ
Rs
(1 + δ

Rs
+ 1

3(
δ
Rs
)

2
)

. (11)

The Tolman length would, in general, be a complex function of the
size of the particle. However, Tolman made the assumption that δ is
a constant (independent of Rs) and δ/Rs≪ 1.53,54 Under these condi-
tions, the above equation gives a simple expression for the curvature
dependence of surface tension in terms of the planar surface tension,
γ∞, and the Tolman length,

γ(T, Rs) ≈ γ∞(1 −
2δ
Rs
). (12)

Note that in the above expression, the curvature independent δ is in
fact the Tolman length in the planar limit, δ = limRe ,Rs→∞ = ze − zs.54

However, it is known that δ varies strongly with the droplet
size.18,55 Helfrich came up with a phenomenological correction to
the above expression56 using the bending rigidity constant (k) and
rigidity constant (k) as prefactors for the second order correction,

γ(T, Rs) ≈ γ∞(1 −
2δ
Rs

+
C
R2

s
), (13)

where the constant C = (2k + k)/γ∞.

C. Nucleation rate
Once the nucleation barrier ΔG∗(T, R) is known, the nucleation

rate can be calculated. The nucleation rate, according to the classical
nucleation picture, can be written as8
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J = Zfe(N∗)ρve−ΔG∗/kBT , (14)

where Z is the Zeldovich factor, f e(N) is the forward rate at which
the cluster of size N grows, and N∗ is the critical nucleus size. The
Zeldovich factor is given by

Z =

√

−
ΔG′′(N∗)

2πkBT
=

√
Δμ

6πN∗kBT
, (15)

where ΔG′′(N∗) is the second derivative of ΔG with respect to N
at the critical nucleus size N∗. The second equality is obtained by
taking the second derivative of Eq. (3) under the assumption that the
R dependent surface tension can be approximated using the critical
nuclei surface tension. This should be a reasonable approximation
for the postcritical and precritical states near the top of the barrier.
The forward rate, f e, is given by

fe(N) =
A(N)cn1,e⟨∣v∣⟩

4
, (16)

where A(N) is the surface area of the liquid droplet and c is the
condensation coefficient. n1,e is the monomer density which is
approximated using the ideal gas assumption as ρv/S, where S is the
supersaturation (S = P/Pcoex). ⟨|v|⟩ is the average molecular speed
approximated to the ideal gas value equal of

√
8kBT/πm, where m is

the mass of the molecule.

D. Generalized Replica Exchange Method (gREM)
In this section, gREM, which is used to simulate the different

states from pure vapor to pure liquid, is described. gREM along with
Weighted Histogram Analysis Method (WHAM)57–59 postprocess-
ing allows the evaluation of the free energy profile for the first order
transformation.

An isobaric-isothermal ensemble simulation cannot effectively
sample a first order transition since the energy gap corresponding
to the latent heat results in a disjointed probability distribution.49

A first order transition has a back-bending of the statistical tem-
perature varying with enthalpy. The statistical temperature, Ts, is
defined as

Ts = (
∂S
∂H
)

−1

, (17)

where S is the entropy and H is the enthalpy.
At a given temperature, the free energy profile has two min-

ima corresponding to the bulk states and one maximum corre-
sponding to the unstable nuclei state. For the purpose of study-
ing nucleation, it is the unstable state we are interested in.
Simulation at a constant temperature would only sample the two
bulk states at the free energy minima. gREM44,60 is an effective tech-
nique to study the unstable state. The generalized ensemble changes
the sampling to follow a path where the free energy maximum of
the unstable state in the canonical ensemble is converted to a mini-
mum in the generalized ensemble. Sampling is done along a param-
eterized temperature-enthalpy relation for the constant pressure
simulation.

Replica exchange further enhances the configurations that are
sampled. Replica exchange has been used along with the canonical

ensemble to attain better sampling for many systems61,62 and is easily
incorporated in the generalized ensemble as shown by Kim et al.44 In
gREM, each replica α has its own “effective” temperature, Tα, and its
corresponding sampling weight, Wα.

For a system with M replicas, there are M parallel simulations at
different “effective” temperatures. The mapping between the effec-
tive temperature (Tα), which varies with enthalpy, and the sampling
weight is given by

wα(H) = ∫
H

H0

1
Tα(H′)

dH′, (18)

where wα is the “generalized effective potential” and is related to the
generalized ensemble weight Wα by wα(H) = − ln (Wα(H)). H0 is
a reference enthalpy value.

The condition for stability of the nuclei state is given by min-
imizing the “generalized” free energy, βFα(H) = wα(H) − S(H).
Minimization of Fα gives

Ts(H∗) = (
∂wα

∂H
)

−1

∣

H∗
= Tα(H∗) = T∗α , (19)

where H∗ is the enthalpy corresponding to the minimum in the gen-
eralized free energy. This means that the probability distribution
function is centered around the Ts(H∗) point. The stability con-
dition for this extremum is given by the second derivative of the
generalized free energy being negative,

βF ′′
α (H

∗
) =

T′s(H∗) − T′α(H∗)
T∗α

< 0. (20)

The simplest parameterization for the effective temperature as
a function of enthalpy is a straight line,

Tα(H) = λα + γ(H −H0). (21)

The parameters λα and γ are the intercept and slope of the straight
line along which the search for the generalized free energy minimum
is performed. The slope γ is chosen to be sufficiently negative to
make sure that Eq. (20) is satisfied for all values of H, and Tα(H)
intersects with the statistical temperature curve only once. This lin-
ear parameterization of effective temperature gives weights that have
a generic form of the Tsallis weights.44

Exchange of configurations between two replicas α and α′ is
attempted periodically and accepted with the weight,

Aα,α′ = min[1, exp(Δ)], (22)

where Δ = wα(H) + wα′ (H′) − wα(H′) − wα′ (H). Here, H is the
enthalpy of the configuration in the α replica and H′ is the enthalpy
of the configuration in the α′ replica. Exchange between adjacent
replicas occurs when there is an overlap in the energy distribu-
tion; as system size increases, the distributions become narrower and
exchange reduces. As the system size increases, more replicas are
required for efficient sampling.43,63

Once the probability distribution function is obtained in the
generalized ensemble with multiple replicas, the Weighted His-
togram Analysis Method (WHAM)57–59 is used to stitch together

J. Chem. Phys. 151, 134108 (2019); doi: 10.1063/1.5116252 151, 134108-4

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

the distribution functions from the different replicas. WHAM con-
verts the biased distribution function into the unbiased continu-
ous free energy curve from the bulk vapor to bulk liquid. Since
WHAM calculations can get very intensive because of iterative eval-
uations of the partition function, we use the recently developed
iteration-free approximation called the Statistical Temperature
WHAM (ST-WHAM).64 ST-WHAM speeds up the process of
stitching up independent probability distributions to give a single
free energy profile at no loss of accuracy, the effectiveness of which
has been tested for multiple systems.64–66

The density of states (DOS) is given by

Ω(H) =
H (H)

∑α NαWα(H)/Δα
, (23)

where H (H) = ∑α Hα = NαPα, where Nα and Pα are number of
samples and probability distribution functions in replica α, respec-
tively. Wα is the generalized ensemble weight and Δα is the rel-
ative partition function. The partition function depends on DOS,
Δα = ∑HΩ(H)Wα(H). In the WHAM formulation, these two equa-
tions are solved iteratively to obtain the partition function. Once
the partition function is known, all other properties can be obtained
from statistical mechanical relations.

In ST-WHAM, instead of working with the extensive quanti-
ties, one works with the derivative quantities. The inverse tempera-
ture is the derivative of the log of DOS,

1
kBTs

=
∂ ln Ω
∂H

= ∑
α

Hα

H
[

∂

∂H
ln(

Hα

NαWα/Δα
)

+
∂

∂H
ln(

NαWα/Δα

∑α′ Nα′Wα′/Δα′
)]. (24)

In ST-WHAM, the second term is neglected, which makes iter-
ations to get the partition function unnecessary. Kim et al.64 have
shown that neglecting the second term does not affect the accu-
racy of the results. We compared the ST-WHAM to WHAM for our
simulation data, and both methods lead to the same result.

Once the statistical temperature is known, the entropy and
Gibbs free energy as a function of the enthalpy are obtained using

S(H) = ∫
dH

Ts(H)
,

G(H) = H − Ts(H)S(H).
(25)

III. SIMULATION METHODOLOGY
In this work, the cut-and-shifted Lennard-Jones potential is

used,

βu(r) =
⎧⎪⎪
⎨
⎪⎪⎩

βuLJ(r) − βuLJ(rc) if r < rc,

0 if r ≥ rc,
(26)

where r is the distance between particles and β = 1/kBT. The
Lennard-Jones potential is uLJ(r) = 4ε[(σ/r)12

− (σ/r)6
]. Here, rc

is the cutoff distance, σ is the diameter of the particles, and ε is the
interaction energy. No long range corrections are added. rc = 2.5σ
is used for all the calculations except the nucleation rate calculations

where rc = 5.0σ is used to allow comparison with the literature values
using the higher cutoff.

The system consists of 2744 particles in a cubic box for all sim-
ulations, except those analyzing the planar interface. A system size
convergence test was performed to ensure that the free energy num-
bers obtained from the simulation were independent of the number
of particles. gREM implemented in LAMMPS47 is used to run the
simulations.48 The Nose-Hoover barostat and thermostat are used.
A time step of 0.005τ is used, where τ = t

√
ε/mσ2. All the quantities

presented here are in reduced LJ units: temperature is given in the
units of kBT/ε, pressure in the units of Pσ3/ε, density in the units of
ρσ3, and distance is z/σ.

To set up the parameters for gREM, two short NPT sim-
ulations were run at the extremes of the range of interest. The
enthalpy H̃1 and H̃2 are obtained at the two temperatures T1 and
T2. The reference enthalpy in Eq. (21), H0, is set equal to H̃1,
and the intercept λ1 of the first replica is set to T1 and λM of the
last replica is set to T2 − γ(H̃2 − H̃1). All the other intercepts,
λ2 . . . λM−1, are placed in between these two limits. An initial run
with equally spaced replicas is performed. If any discontinuity in
the probability distribution function is found, a few more replicas
are manually added to ensure complete sampling. The slope γ is
selected such that it is more negative than the largest slope of the
Ts curve. This is usually found by trial and error. The initial con-
dition for all replicas is a simple cubic lattice at a liquidlike den-
sity. For all the thermodynamic calculations, exchange was set at
100 000 steps, except for the simulations where the pressure and
density profile were calculated. In that case, there was no exchange,
and a single walker was followed to get the statistics. The simula-
tions were run for 1.6 ∗ 107 steps after equilibration for 4 ∗ 106

steps. The postprocessing analysis was done using scripts written in
python.67

For all the simulations, the pressure of the whole system was set
to a predefined pressure. However, for the planar case, setting over-
all pressure gives a bulk pressure that is higher than the set pressure
because of the dip in the tangential pressure of the planar interface
(discussed in more detail in Sec. IV B). So, for the case of the pla-
nar interface, a set of NPzz gREM simulations were performed where
only the normal pressure is set to a predefined pressure and the pres-
sure in the tangential directions is allowed to respond to the normal
pressure.

To obtain the pressure profile, we used a modified version of the
patch to LAMMPS by Nakamura et al.68 The pressure patch imple-
ments the Irving-Kirkwood contour integration69 and was used to
get the tangential and normal pressure profiles. The pressure and
density profile was obtained by following a replica and averaging
over 1.2 ∗ 107 steps after allowing for equilibration over 4 ∗ 106

steps. The temperature of the replica is taken to be the arithmetic
mean of all the temperatures visited by the replica during the pro-
duction cycle. While the replica visits several temperatures around
the mean and the sampling is non-Boltzmann, we still find the aver-
aging for density and pressure from a replica matches that from a
canonical ensemble.

The error analysis was done using the bootstrapping method.70

Fifty different datasets are “generated” by randomly picking samples
from the original dataset obtained from gREM allowing for duplica-
tion. These datasets are now treated as independent samples and are
then used to calculate the average and variance.
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IV. RESULTS AND DISCUSSION
This section describes the results from the gREM simula-

tion. The prediction of the coexistence properties is discussed in
Subsection IV A. This is followed by a study of the interfacial proper-
ties at the planar and spherical interface. Finally, the nucleation rates
from gREM are compared with those from direct simulation.

A. Coexistence
While the effectiveness of using gREM for studying the vapor-

liquid coexistence of Lennard-Jones fluid has previously been
shown,49 we discuss it here briefly for completeness. Figure 1 shows
the temperature varying with enthalpy for pressure P = 0.028
through a first order vapor-liquid transition. In the thermody-
namic limit, N → ∞, the T-H curve would be a horizontal line
through the transition and the two phases would coexist according
to the level rule. The states that would be metastable or unstable
in the thermodynamic limit are rendered stable in the finite sys-
tem. In the limit of infinite number of particles, the system would
nucleate instantaneously and not stay in the metastable or unstable
states.46

In Fig. 1, the low enthalpy region on the left is the stable liq-
uid. As the enthalpy is increased, the temperature of the stable liquid
increases. Once the coexistence point is crossed, the one phase liquid
is now metastable (the vapor is the stable state at this temperature).
The temperature rises until the bubble evaporation-condensation
transition point is reached.71 At this point, the first vapor bubble
appears and the temperature starts to decrease. As the enthalpy
increases, the spherical bubble becomes bigger in size and finally
transitions to cylindrical bubbles (configuration not shown in the
figure). With a further increase in enthalpy, the cylinder transi-
tions to a planar interface between the liquid and vapor. The pla-
nar interface should occur at the coexistence temperature, but in
gREM, the planar interface occurs at a temperature slightly above the

FIG. 1. Temperature vs enthalpy for the vapor-liquid transition at a pressure of
0.028. Shown along the curve are different configurations formed from left to
right—stable liquid, metastable liquid, spherical bubble, planar interface, liquid
cylinder, liquid spherical droplet, metastable vapor and stable vapor. The config-
urations shown here are not to scale. The red horizontal line is the coexistence
temperature.

FIG. 2. Gibbs free energy vs temperature at a pressure of 0.028. Also shown are
the Gibbs free energy difference, ΔG∗, between the spherical liquid droplet and
the metastable vapor phase (in the inset), and the chemical potential difference
times the number of particles, NΔμ, between the metastable vapor state and the
stable liquid state at temperature, T = 0.864.

coexistence temperature. This discrepancy is explained in the planar
interface section (Sec. IV B). As the enthalpy is further increased, the
vapor becomes the dominant phase and the nuclei is a liquid cylin-
der. This is followed by the appearance of spherical liquid droplets.
Finally, the liquid phase disappears and the system is present as a
metastable vapor phase. Further increase in enthalpy results in a rise
of temperature, and after the coexistence temperature is crossed, the
vapor phase is stable. Figure 2 shows the Gibbs free energy vary-
ing with the temperature obtained using Eq. (25) for P = 0.028. The
coexistence point can be obtained from the intersection of the liquid
and vapor branches of the G-T curve or from an equal area con-
struction (similar to the Maxwell construction) of the inverse tem-
perature curve.49 Figure 3 shows the pressure vs temperature coex-
istence plot compared against the data from MD simulations.16 In
Fig. 3, the expression that Vrabec et al. fit to their MD data is shown:
ln(p) = 3.166 4–5.980 8/T + 0.014 98/T3.

FIG. 3. Temperature vs pressure coexistence curve. Red dots are the values
obtained from gREM, and the black curve are the data using the expression from
Vrabec et al.16
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FIG. 4. Planar interface configuration using the NP gREM scheme (where the total
pressure is set) at P = 0.028. The z-dimension is 3 times the length in x and y
dimensions.

B. Planar interface
Planar interface results shown here are with an elongated box

with the z-dimension being 3 times the x and y and contains 3000
particles. An elongated box is used to obtain a thicker liquid slab.
The bulk liquid is in the center and bulk vapor is on both sides in the
configuration shown in Fig. 4.

Figure 5 shows the normal and tangential pressure profile vary-
ing with the distance perpendicular to the interface for the planar
interface. The simulation is performed with the pressure of the entire
system set to Pset = 0.028. Normal pressure remains constant across
the interface, as required by the mechanical equilibrium condition,
while the tangential pressure dips at the interface. As shown in Fig. 5,
the bulk vapor pressure is higher than the set pressure of 0.028. This
is because the total pressure of the system is maintained and in the
case of an interface, where there is a dip in the tangential pressure,
the bulk pressure has to be larger than Pset to get a total pressure
equal to Pset . The planar interface occurs at temperature T = 0.908
which is higher than the coexistence temperature T = 0.885 for this
pressure. It is, however, the coexistence temperature for a pressure
of P = 0.033, which is roughly the vapor pressure in Fig. 5. The pla-
nar interface for a cubical box occurs at temperature T = 0.93 (as
in Fig. 1), so elongating the box brings the temperature at which
the planar interface occurs closer to the coexistence temperature.
This is because for the elongated box, the ratio of the interfacial

FIG. 5. Planar interface pressure profile using the NP gREM scheme where total
pressure is set at P = 0.028. Red dots are the normal pressure, PN , and blue dots
are the tangential pressure, PT . Here, the slab configuration occurs at temperature
T = 0.908.

region to the bulk region is reduced and the effect of interfacial dip
on the total pressure is lower. In the limit of infinite size in the
z-dimension, the planar interface should occur at the coexistence
temperature.

For the planar case, since the normal pressure remains constant
throughout the interface, a possibility is to set the normal pressure to
the required bulk vapor pressure. This scheme, NPzz gREM, where
only the normal pressure is restricted to a certain value (tangential
pressure is not explicitly controlled, but responds to the normal pres-
sure) gives the density and pressure profile shown in Fig. 6. The bulk
vapor pressure does indeed go to the set pressure now and the pla-
nar interface now occurs in gREM at the coexistence temperature
T = 0.885. The surface tension for the planar interface can be
calculated from the pressure profile using the mechanical route as50

γp,m = ∫ dz(PN(z) − PT(z)). (27)

For T = 0.885, the surface tension obtained is γp ,m = 0.25 which
compares well with the value obtained from Vrabec’s relation,16

FIG. 6. Planar interface profiles using the NPzz gREM scheme where normal pres-
sure is set at P = 0.028. (a) Density profile and (b) pressure profile showing normal
pressure (PN) with red dots and tangential pressure (PT ) with blue dots. Here, the
slab configuration occurs at the coexistence temperature T = 0.885 and P = 0.028.
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γ = 2.08(1 − T/Tc)
1.21
= 0.26. Here, Tc is the critical temperature

equal to 1.0779.
Surface tension can also be calculated from the Gibbs free

energy (thermodynamic route) as

γp,t =
G −Nμ

A
, (28)

where G is the Gibbs free energy of the system with the planar inter-
face, μ is the chemical potential which is equal for the liquid and the
vapor, μ = Gl/N = Gv/N, and A is the cross-sectional area. Gl and Gv
are the liquid and vapor free energy at the coexistence temperature,
respectively. Since the planar interface that gREM samples in the iso-
baric ensemble is not at the right pressure, we cannot get a value for
the planar interface surface tension from the thermodynamic route.
It should be noted that this should not be a problem for the solid-
liquid interface since the density difference between the solid and
liquid is not as large as the vapor-liquid system. It has been verified
that the planar interface does occur at the coexistence temperature
for the solid-liquid system.72

While the NPzz gREM method gives the planar interface with
the right vapor pressure, it cannot be integrated with the other con-
figurations (spheres and cylinders) obtained from NP gREM to get
the free energy since these two are fundamentally different simu-
lations. The NPzz gREM method can only be applied to the planar
interface since only in the planar interface the normal pressure is
constant. For the spherical and cylindrical interfaces, the mechanical
equilibrium condition gives a different relation between the normal
and tangential pressures.

We also note that this problem does not occur for the spherical
interface. In the spherical case, the bulk vapor pressure does indeed
go to the set pressure [as shown in Fig. 7(b)]. We have compared the
density and pressure profiles for the spherical interface from gREM
with profiles from an NVT simulation at the same condition and
found that the two profiles match well. We also emphasize that the

error in sampling the planar state does not affect the free energy of
formation of a spherical liquid droplet since the integration path
from the vapor state to the droplet state does not go through the
planar interface.

Finally, the problem here is due to the constant pressure con-
straint on the system and not the generalized ensemble algorithm.
Running the gREM in the grand canonical ensemble with Tα vary-
ing with U − μN instead of H should lead to the planar interface
being sampled correctly as has been shown by other methods in the
μV T ensemble.46

C. Spherical interface
Figure 7(a) shows the density profile for a spherical droplet

at pressure P = 0.028 and average temperature Tavg = 0.864 in a
cubic box. The averaging for the profile is done by following a sin-
gle walker. Also shown in the figure are the Gibbs dividing surface
(Re) and the surface of tension (Rs) obtained using Eqs. (6) and (7),
respectively. The qualitative trends in surface tension or the Tolman
length do not change based on the choice of the dividing surface, and
only a small quantitative difference can be seen. Finally, we have fit
the density profile to a hyperbolic tangent function that is used to
obtain the bulk liquid and vapor density [see Eqs. (18) and (19) of
Ref. 16].

Figure 7(b) shows the normal (PN ) and tangential (PT) pressure
profiles for the spherical interface. We have verified that the normal
and tangential profiles satisfy the mechanical equilibrium condition,
∇ ⋅P = 0, which in spherical coordinates is given by50

PT(r) = PN(r) +
r
2

dPN(r)
dr

, (29)

where the second term is the derivative of the normal pressure with
respect to the distance from the center of the sphere. The above
condition confirms that the droplet is in mechanical equilibrium.

FIG. 7. Spherical interface at pressure p = 0.028 and T = 0.864. (a) Density profile varying with the distance from the center of the sphere. Spheres are the simulated data
(ρsim) and the line is the fit (ρfit ). The Gibbs equimolar dividing surface Re = 8.03 and the surface of tension Rs = 7.1 are also shown. (b) Normal and tangential components of
the pressure tensor varying with the distance from the center of the spherical droplet. The red spheres and blue squares are normal (Psim

N ) and tangential (Psim
T ) pressures

obtained in the simulation, respectively. The red line is the fit to the normal pressure (Pfit
N ) and the blue line is the tangential pressure (Pfit

T ) obtained from the mechanical
equilibrium condition [Eq. (29)], thus verifying the mechanical equilibrium condition.
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Next, the chemical potential inside and outside the droplet
is compared to check for chemical equilibrium, i.e., μl(T, Pl)
= μv(T, Pv). Here, μl and μv are the liquid and vapor chemical poten-
tials at temperature T and liquid (Pl) and vapor (Pv) pressures,
respectively. Pl and Pv are obtained from hyperbolic tangent fits to
the normal pressure profile similar to what was done for the den-
sity profile [see Eq. (22) from Ref. 16]. From the G-T curve (Fig. 2),
μv(T, Pv) = Gv(T, Pv)/N and μl(T, Pv) = Gl(T, Pv)/N, where N is
the number of particles in the system. The chemical potential at the
liquid pressure is obtained by thermodynamic integration, μl(T, Pl)

= μl(T, Pv)+ ∫
Pl

Pv
dp/ρl. A series of NPT simulations were performed

from Pv to Pl at the temperature T to get the density ρl as a func-
tion of pressure. Using this method, we verified that the chemical
potential inside and outside the droplet is indeed the same. For the
sphere shown in Fig. 7(a), the vapor pressure is Pv = 0.028, the liq-
uid pressure inside the sphere (from the fit) is Pl = 0.102, and the
temperature is T = 0.864. From the G-T curve in Fig. 2, μv(T, Pv)
= −4.619 and μl(T, Pv) = −4.726. From NPT simulations, the integral
value ∫

Pl
Pv

dP/ρl = 0.105 which gives μl(T, Pl) = −4.621. The error in
μv(T, Pv) and μl(T, Pl) is of the order of 10−5. The error in the
chemical potential equality is about 0.04%.

Now that it has been established that the spherical droplet is
in chemical and mechanical equilibrium, we can obtain the nucle-
ation free energy of the spherical droplet from the G-T curve (Fig. 2).
Figure 8 shows a comparison of nucleation free energies with the
literature values for different supersaturations with the numerical
values given in Table I. We note here that gREM is most useful
for nuclei with larger cluster size, while it is easier to do umbrella
sampling for smaller cluster size. For all conditions, gREM is in rea-
sonable agreement with the literature values. An advantage of gREM
is that no classification scheme is required to artificially separate the
particles to be “vapor” and “liquid” to obtain the nucleation free

FIG. 8. Nucleation free energy barrier comparison with the literature values for
various pressures at temperature T = 0.741. Black circles are the gREM results
from this work, red squares are the umbrella sampling results from ten Wolde and
Frenkel (US ten Wolde),21 blue triangles are the umbrella sampling results from
aggregation-volume-bias Monte Carlo simulations of Chen et al. (US Chen),26 and
the green diamonds are from the variational approach of Piaggi et al. (Variational
Piaggi).74

TABLE I. Nucleation free energy barrier comparison with the literature values for var-
ious pressures at temperature T = 0.741. gREM results from this work are compared
against the literature values.

P βΔG∗gREM βΔG∗lit

0.01202 53.4 ± 0.2 57a, 62b

0.01406 33.0 ± 0.2 29a, 32b

0.01603 10.8 ± 0.1 18a, 20b, 13c

aUmbrella sampling results from Ref. 21.
bUmbrella sampling results from aggregation-volume-bias Monte Carlo simulations of
Chen et al.26

cVariational approach of Piaggi et al.74

energy barrier. Mechanical bias algorithms like umbrella sampling
require a classification to apply the bias and it has been shown in the
case of liquid-solid transition that the nucleation free energy profile
is classification dependent.73

D. Tolman Length
Since gREM gives both ΔG∗ and the chemical potential dif-

ference between the liquid and vapor, Δμ(T, Pv) = μl(T, Pv)
− μv(T, Pv), the curvature dependent surface tension for the critical
nuclei is obtained from Eq. (3) as

4πR2γ(R∗, T) = ΔG∗(T, Pv) −
4
3
πR∗3ρlΔμ(T, Pv). (30)

Here, ρl is the liquid density inside the nucleus obtained from the fit
to the density profile and R∗ is the radius of the critical nucleus. For
the curved interface, there are two degrees of freedom75 such that the
quantities T, Pv, and R∗ are intrinsically related. Once two of these
three quantities are defined, the third is automatically fixed. We use
the surface of tension (Rs) to define the radius of the droplet R∗.

Figure 9 shows the ratio of the curvature dependent surface
tension to its planar value varying with the curvature (1/Rs) for

FIG. 9. Ratio of curvature dependent surface tension to the planar value varying
with the inverse size of the droplet for temperature T = 0.9. Red dots are simulation
data, the black line is a second order polynomial fit [γ(Rs)/γ∞ = 1 − 0.27/Rs
− 2.73/R2

s ], and the blue line a linear fit [γ(Rs)/γ∞ = 1–0.72/Rs].
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temperature T = 0.9. Twelve simulations were performed at pres-
sures of 0.0351 and 0.035 25–0.037 75 at 0.0025 intervals, and spher-
ical droplets formed at these different pressures at a single temper-
ature (T = 0.9) were studied. Since the simulations are performed
in a constant pressure ensemble, large variation in the droplet size
can be accessed. Smaller droplets (larger 1/R) at T = 0.9 were sam-
pled at pressures greater than 0.037 75, but we fit to just the larger
droplets because the assumptions in the expression being fit are bet-
ter for larger droplets. It has also been shown that fitting to the larger
droplets gives most reliable results.54

We fit both a linear equation [Eq. (12)] and a second order
equation [Eq. (13)] to the simulation data to obtain the Tol-
man length. For the planar surface tension, we use the expression
γ∞(T) = 2.08(1−T/Tc)

1.21 from Vrabec et al.16 As shown in Fig. 9,
the second order equation is a much better fit. The magnitude and
sign of the Tolman length is a matter of great controversy with neg-
ative values generally obtained in DFT calculations while MD simu-
lations giving both negative and positive values.18,19,54,76–79 The fit in
Fig. 9 to the second order equation gives a Tolman length δ(T = 0.9)
= +0.14. DFT calculations by Blokhuis and van Giessen76 report a
value of around −0.1, van Geissen and Blokhuis54 report two differ-
ent numbers: a value of −0.1 using Δp obtained from simulations of
the spherical interface and a value of +0.2 from the planar interface
simulations. They also reported a value of +0.264 obtained from MD
simulations of spheres in a previous publication.78 Haye and Bruin80

reported a value of +0.2 from MD simulations of droplets. The rea-
son for the discrepancy in the above numbers is not clear, but as
pointed out by van Geissen and Blokhuis54 even a small error in the
calculation can change the sign of the Tolman length. The curva-
ture dependent surface tension of vapor bubbles in liquid is another
way to test the value of the Tolman length. While the gREM simu-
lation does adequately sample the spherical bubble state, we found
it difficult to hold this state in a single replica long enough to get
good statistics due to exchange. This should not affect the thermo-
dynamic calculations since the bubble state gets sampled well over
different replicas. The analysis of bubbles will be the focus of future
work.

Finally, it has been noted that a translational entropy term
needs to be added to Eq. (13) to account for the finite size effects
of the simulation.81 When we tried to fit gREM simulation data
with the additional logarithmic term accounting for the translational
entropy, we found that there was no significant difference in the fit
or the Tolman length obtained.

Once the surface tension is known, the variation of the free
energy with R for the precritical and postcritical nuclei can also be
calculated. Instead of using the R-dependent surface tension, we just
use the surface tension of the critical nuclei,

ΔG(R) ≈
4
3
πR3ρlΔμ + 4πR2γ(R∗). (31)

We have made the assumption that the surface tension of the crit-
ical nuclei is a good approximation for the whole range of R. This
should be a better approximation than CNT where the planar surface
tension is used. Figure 10 shows the comparison of the whole free
energy profile with that obtained by ten Wolde and Frenkel using
umbrella sampling.21 The nucleus size in the umbrella sampling
used a classification scheme using the coordination number within

FIG. 10. Nucleation free energy varying with the nucleus size at T = 0.741 and
P = 0.1202. The classification scheme used in the umbrella sampling simulations
by ten Wolde et al.21 is that a particle is liquid-like if it has more than 4 neighbors
and belongs to the same cluster. The cutoff used to define the number of neigh-
bors is 1.5. The nucleus size N in the gREM simulation is calculated as equal to
4/3πR3ρl .

a certain cutoff, while in gREM, the nucleus size N is calculated as
4/3πR3

s ρl.

V. NUCLEATION RATE
Finally, we compare the nucleation rate obtained from gREM

simulation against the nucleation rate obtained by directly counting
the number of nuclei present above a certain threshold value. We
compare against two sets of data: the first is from Horsch et al.82

who simulated 106 particles using LJ potential with a cutoff of 2.5σ
and the second is from Diemand et al.23 who simulated 108 particles
using a cutoff of 5σ. To compare against the latter dataset, we ran
gREM with an LJ cutoff of 5σ. The nucleation rate is obtained using
Eq. (14) where ΔG∗ and Δμ are obtained from the gREM simulation
as shown in Fig. 2. The number of particles in the critical cluster,
N∗, is equal to 4/3πR3

s ρl, and the surface area A(N) is equal to 4πR2
s ,

where Rs is the surface of tension calculated using Eq. (7). The liq-
uid density ρl used here is calculated from a parameterized form
ρl = 0.319 + 0.5649(Tc −T)1/3 + 0.1314(Tc −T) + 0.0413(Tc −T)3/2

for the cutoff rc = 2.5 where the critical temperature is Tc = 1.077 9
and ρl = 0.023 8 ∗ (13.29 + 24.492f 0.35 + 8.155f ) for the larger cutoff
of rc = 5σ where f = (1 − T/1.257).23,83 The vapor density is the same
as the density of the entire box of the vapor branch in gREM at tem-
perature T. We use the condensation coefficient value c obtained in
the simulation by Diemand et al.23 for the cutoff rc = 5σ and use an
approximation for rc = 2.5σ,82,84

c =
b2

(b2 + q2)
, (32)

where

q = Δhv − 0.5kBT −
2
3

A(N)γ(R, T)
N∗

(33)

and
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TABLE II. For LJ cutoff radius rc = 2.5, comparison of the nucleation rate obtained from gREM (JgREM ) with direct simulation
(JMD) results23 at different temperatures (T) and supersaturations (S = P/Pcoex ). ΔG∗ and Δμ are the Gibbs free energy and
chemical potential difference obtained from gREM. c is the condensation coefficient from Eq. (32) which has been used in
Eq. (16).

T S P βΔG∗ Δμ c JMD JgREM

0.8 1.791 0.02478 1.24 0.37 0.068 2∗10−9 8.9 ± 0.1∗10−6

0.85 1.539 0.0329 0.80 0.26 0.084 3∗10−8 3.2 ± 0.3∗10−5

0.9 1.31 0.04123 3.89 0.16 0.11 6∗10−9 3.8 ± 0.1∗10−6

TABLE III. For LJ cutoff radius rc = 5, comparison of the nucleation rate obtained from gREM (JgREM ) with direct simulation
(JMD) results23 at temperature is T = 0.8 at different supersaturations (S = PP/Pcoex ). ΔG∗ and Δμ are the Gibbs free energy
and chemical potential difference obtained from gREM. c is the condensation coefficient from MD23 which has been used in
Eq. (16).

T S P βΔG∗ Δμ c JMD JgREM

0.8 3.55 0.0161 8.58 0.87 0.11 1.25 ± 0.02∗10−12 2.8 ± 0.1∗10−9

0.8 3.33 0.0151 16.90 0.83 0.10 3.38 ± 0.26∗10−14 6.3 ± 0.5∗10−13

b2
= (Cv + 0.5kB)kBT2. (34)

Δhv is the bulk enthalpy of vaporization for which we use the param-
eterized form from Vrabec et al.16 and Cv is the dimensionless iso-
choric heat capacity of the vapor which we approximate to the ideal
gas value 3/2kB.

The comparison of nucleation rates obtained from gREM and
from direct MD simulations, shown in Table II (rc = 2.5σ) and
Table III (rc = 5σ), is reasonable. We note that gREM is most accu-
rate for nuclei with larger cluster size whereas direct MD simulations
are best for observing nucleation with small cluster sizes as these are
the most accessible during MD. We reiterate that the calculation of
the nucleation rate using gREM does not require any classification
scheme to separate the vapor and liquid particles. The curvature
is defined using the surface of tension Rs which is obtained from
thermodynamic quantities [Eq. (7)].

VI. CONCLUSION
In this work, we have applied the generalized Replica Exchange

Method (gREM) to study the vapor-liquid transition of Lennard-
Jones spheres. gREM reproduces the coexistence values very well.
The isobaric implementation of gREM leads to the planar interface
having a bulk pressure higher than the set pressure. This makes the
use of gREM for free energy and surface tension calculation of planar
interfaces difficult in the case of vapor-liquid transition. The prob-
lem should not be this exaggerated for the solid-liquid transition
since the pressure difference between the solid and liquid phases
is not very large in that case and the gREM strategy is applicable
even for the planar case in solid-liquid equilibrium. For the case
of the spherical interface, the nucleation free energy obtained from
gREM is in good comparison with the literature values. The cur-
vature dependent surface tension was then obtained using the free

energy and chemical potential values from gREM. This was, in turn,
used to obtain the Tolman length which compares reasonably well
with the literature values. Finally, the nucleation rate obtained from
gREM is compared against the values from direct simulations.

This work shows the usefulness of the gREM technique for
studying nucleation of spherical droplets. A major advantage of
gREM over umbrella sampling and related methods is that multiple
critical nuclei at different conditions can be simultaneously studied.
This is because gREM obtains the free energy difference between the
nuclei state and the bulk by integrating over a path of critical nuclei
formed at different conditions. In contrast, umbrella sampling inte-
grates along a path of nuclei at the same thermodynamic state but
ones that are not mechanically stable (precritical) nuclei. Another
advantage is that the free energy obtained in gREM is free of any
classification scheme.
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