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The first order curvature correction to the crystal-liquid interfacial free energy is calculated using a
theoretical model based on the interfacial excess thermodynamic properties. The correction parameter
(δ), which is analogous to the Tolman length at a liquid-vapor interface, is found to be 0.48 ± 0.05
for a Lennard-Jones (LJ) fluid. We show that this curvature correction is crucial in predicting the
nucleation barrier when the size of the crystal nucleus is small. The thermodynamic driving force
(∆µ) corresponding to available simulated nucleation conditions is also calculated by combining the
simulated data with a classical density functional theory. In this paper, we show that the classical
nucleation theory is capable of predicting the nucleation barrier with excellent agreement to the sim-
ulated results when the curvature correction to the interfacial free energy is accounted for. Published
by AIP Publishing. https://doi.org/10.1063/1.5021944

I. INTRODUCTION

The quest for new crystalline materials for technological
applications has drawn immense attention of researchers for
many years. One of the major hindrances of growing a mate-
rial with desired physical properties is the inadequacy of the
knowledge of atomic scale mechanisms of crystal nucleation
and growth.

The mechanism of growing a stable crystalline cluster in a
metastable phase is controlled by two competing factors: The
interfacial free energy (γ) cost to create the interface and the
thermodynamic driving force due to the metastability of the
liquid phase.1–5 The latter is given by the difference of chemi-
cal potentials (∆µ= µc − µl) of bulk crystal (µc) and liquid (µl)
phases. In this context, a thermodynamic description of the for-
mation of crystallites in a metastable phase is well formulated
by the Classical Nucleation Theory (CNT).5–8 According to
the CNT, the Gibbs free energy cost to create a crystallite of N
atoms out of a metastable phase (supercooled liquid) is given
by

∆G = γA + N∆µ, (1)

where A is the area of the crystal-liquid interface.
However, many attempts of testing the CNT may lack

an accurate estimation of the γ, especially its curvature depen-
dence. For example, the often used γ approximation from a pla-
nar interface (γ0) for spherical crystallites is indeed incapable
of predicting the simulation and experimental results.9–11

Parameter fitting of the simulation data to the functional form
of Eq. (1) also suggests significant deviation of γ from its
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planar value.12–14 It has also been reported that the non-
spherical shapes of the crystallites could be a source of the
problem.15 Therefore, the role of curvature dependence of
γ for a crystal-liquid interface in CNT is not resolved yet.
The planar limit of the crystal-liquid interfacial free energy
(γ0) has been studied extensively for several model mate-
rials including the LJ fluid.16–19 However direct calculation
of the curvature dependence of crystal-liquid interfacial free
energy has not been reported in the literature to the best of our
knowledge.

In this paper, a theoretical model is developed and tested
to calculate the curvature dependence of γ at a crystal-liquid
interface. The first order correction to the γ0 due to the curva-
ture (1/R, R is the radius of the crystallite) can be expressed
as

γ(R, T ) = γ0(T )

(
1 +

2δ
R

)
, (2)

where δ is called the Tolman length20 in analogous to the
liquid-vapor interface. To the lowest order, we assume that
the temperature dependence of δ is negligible. As the main
result of this paper, an analytical expression for the constant
δ is derived from an equilibrium thermodynamic approach.
Then the value of δ is calculated using a spherical shape
crystalline cluster which coexists with its liquid in atomistic
simulations. We show that this curvature correction is cru-
cial in predicting the nucleation barrier when the size of the
crystallites is small. Furthermore, the driving force (∆µ) cor-
responding to known simulation conditions12 is calculated
by combining the simulated data with a classical density
functional theory.21 These independently calculated values
of δ, ∆µ, and γ0 are used to predict the nucleation bar-
rier within the CNT. Our theoretically predicted nucleation
barrier is in good agreement with the simulated nucleation
barrier.12
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II. THEORY

The formulation of Laird et al.16 for a planar interface is
extended to a spherical interface under the hydrostatic condi-
tion in the crystalline region; namely, the interfacial free energy
of a spherical interface is derived in terms of excess quanti-
ties of the interface, which can be measured from molecular
simulations.

We assume that the shape of the crystal cluster is nearly
spherical in which the two principal radii are equal. The ther-
modynamics of interfaces can be formulated by adapting a
spherical Gibbs dividing surface from the center of the crys-
talline cluster that separates the crystalline and the liquid
phases. The interfacial free energy per unit area (γ) can be
given by8,16

γ = e − Tη − µΓ, (3)

where e, η, and Γ are the interfacial excess energy per unit area,
entropy per unit area, and number of particles per unit area,
respectively. The temperature (T ) and the chemical potential
(µ) are the values under the coexistence condition of the inter-
facial system. The interfacial excess quantities are defined as
follows:

eA = E − ρE
s Vs − ρ

E
l Vl, (4)

ηA = S − ρS
s Vs − ρ

S
l Vl, (5)

ΓA = N − ρsVs − ρlVl, (6)

where ρE
s (ρE

l ), ρS
s (ρS

l ), and ρs(ρl) are the energy, entropy, and
number densities in the bulk solid (liquid) and V s and V l are
the volume of the solid and liquid phases with respect to the
Gibbs dividing surface with radius R which is defined by let-
ting Γ = 0 or N = N s + N l as V = V s + V l. E and S are the
total energy and entropy of the system, respectively. A, V, and
N are interfacial area, volume, and the total number of parti-
cles of the system, respectively. Thus the γ can be expressed
as16

γ = e − Tη. (7)

Following Cahn,16,22 the interfacial thermodynamics can
also be reformulated in a differential form equivalently for a
spherical Gibbs dividing surface. The Gibbs free energy of
the system containing a spherical crystalline cluster can be
expressed as

G = E − TS + PsVs + PlVl, (8)

where Ps(Pl) are the pressure of the solid (liquid) phase. The
Gibbs free energy of the bulk phases without the interface can
be written as

Gb = N µ. (9)

By subtracting Eq. (9) from Eq. (8), the interface free
energy can be written as

γA = G − Gb = E − TS + PsVs + PlVl − N µ. (10)

The total differential of the γA can be written as

d(γA) = dE − TdS − SdT + PsdVs + PldVl + VsdPs + VldPl

− µdN − Ndµ. (11)

For a crystalline cluster under hydrostatic conditions
surrounded by its liquid, we can write

dE = TdS − PsdVs − PldVl +
∑

i,j=1,2

(
σij − δijσ33

)
Vdε ij + µdN ,

(12)
where σij and ε ij are the ij components (mutually orthogo-
nal) of the stress and the strain tensors in the plane of the
interface. σ33 represents the component of the stress tensor
perpendicular to the interface. This equation is a generaliza-
tion of the Frolov and Mishin23 and Laird et al.16 formula-
tion for a planar interface. It should be noted that the fourth
term in Eq. (12) represents the interfacial contribution to the
mechanical work of the system, thus implicitly containing an
integration over the interfacial region at constant volume as the
strain tensor is traceless. Subtracting Eq. (12) from Eq. (11)
yields

d(γA) = −SdT + VsdPs + VldPl

+
∑

i,j=1,2

(
σij − δijσ33

)
Vdε ij −Ndµ. (13)

Using the Gibbs-Duhem equation for the bulk solid and the
liquid phases,

−SsdT + VsdPs − Nsdµ = 0, (14)

−SldT + VldPl − Nldµ = 0, (15)

and the Gibbs dividing surface16,22 condition N = N s + N l,
subtracting Eqs. (14) and (15) from Eq. (13) yields

d(γA) = −ηAdT +
∑

i,j=1,2

(
σij − δijσ33

)
Vdε ij, (16)

which is an equivalent differential form of Eq. (7).
For a spherical interface, we assume that the two tangential

components of the strain tensor are equal dε11 = dε22 = dε
= dA/2A, then

d(γA) = −ηAdT + (σ11 + σ22 − 2σ33)V
dA
2A

(17)

or
1
A

d(γA) = −ηdT + τ
dA
A

, (18)

where τ = (σ11 + σ22 − 2σ33)V/(2A) is the interfacial stress,
which is calculated as τ = R ∫

∞
0

2τ(r)
r dr with mechanical equi-

librium condition24 and τ(r) = (σ11(r) + σ22(r) − 2σ33(r))/2
being the excess stress in the system. Due to the spherical
symmetry of the growing crystalline cluster in liquid, the
off-diagonal components of the stress tensor are assumed neg-
ligible. The calculation of the stress tensor of the simulated
spherical cluster indeed confirms that the off-diagonal com-
ponents are smaller than the diagonal terms by several orders
of magnitudes.

As γ = e − Tη, we have

1
A

d(γA/T ) = −
e

T2
dT +

τ

T
dA
A

, (19)

where e and τ are the curvature dependent excess energy and
interfacial stress, respectively. Along the coexistence path,
Eq. (19) can be written as
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1
A

d(γA/T )
dT

= −
e

T2
+
τ

T
1
A

dA
dT

. (20)

Using Eq. (2), the derivative of γ with respect to temper-
ature can be expressed as

dγ
dT
=

dγ0

dT

(
1 +

2δ
R

)
−

2γ0δ

R2

dR
dT

, (21)

where we assume that the Tolman length δ does not depend
on temperature. Combining Eqs. (21) and (20), we find

δ =

−e
T2 + τ

T
1
A

dA
dT −

(
1
T

dγ0
dT + γ0

T
1
A

dA
dT −

γ0

T2

)
2
R

(
1
T

dγ0
dT + γ0

T
1
A

dA
dT −

γ0

T2

)
−

2γ0

R2T
dR
dT

, (22)

where dR
dT is the change of the spherical radius with temper-

ature. As the differential dA/A accounts for a small change
of the strain in the interfacial region, the derivative dA/dT
can be estimated from the density change of the bulk solid
along the coexistence path of the system. Since the surface
area of a spherical cluster containing N s atom can be written
as A = 4π(3Ns/4πρs(T ))2/3, we find

1
A

dA
dT
=
−2
3ρs

dρs

dT
. (23)

Equation (22) is the major result of the paper, which expresses
the Tolman length δ in terms of interfacial excess quantities
which can be measured from simulations.

III. SIMULATION METHODOLOGY AND RESULTS

Nearly spherical crystalline clusters can be realized with
NVT conditions in classical molecular dynamics (MD) sim-
ulations.25 Thermodynamic equilibrium of a spherical crys-
talline cluster with its liquid was achieved via the finite size
effect.26 The LJ pair potential due to Broughton and Gilmer
is used to describe the atomic interactions27 and all the mea-
surements in this paper are in LJ units. The typos in some
parameters of the above LJ potential are corrected as described
in Ref. 16. This potential has been used in previous stud-
ies to study the interfacial properties of planar interfaces16

and nucleation barrier.12 In Fig. 1, a snapshot of the spheri-
cal crystalline nucleus which coexists with its liquid at total
density 0.8722 and T = 0.64 is shown. The crystalline atoms
are determined by analyzing the common neighbors within
the Large-scale Atomic/Molecular Massively Parallel Simula-
tor (LAMMPS) package;28,29 namely, atoms belonging to the
crystalline region have a fcc or hcp structure. All the atoms
inside the outermost boundary of the crystalline region are
considered to belong to the crystalline phase. The geomet-
ric center of the cluster is calculated from these identified
atoms, and it is considered as the origin of the spherical coordi-
nate system during the rest of the calculation. Once the origin
of the coordinate systems is identified, the above separation
of crystalline and liquid phases is not required for further
analysis.

Figure 3(c) shows the radial distribution of the atomic
number density from the center of the crystalline cluster at
T = 0.64. The bulk properties of the crystal and the liquid
phases were calculated using a small spherical region inside
the crystalline cluster and a thin shell in the outermost liquid

FIG. 1. A spherical crystalline cluster coexists with its liquid at T = 0.64.
The length of the cubic simulation box is 48.4433σ, and the total num-
ber of particles is 99 159. The crystalline cluster has approximately 17 000
particles.

region. The calculated atomic number density of the crystalline
(liquid) phase at temperatures T = 0.62, 0.63, and 0.64 are
0.9536(0.8479), 0.9562(0.8525), and 0.9577(0.8556), respec-
tively. The spherical nucleus melts when the temperature is
increased beyond T = 0.64. In this narrow temperature range,
a linear fit is used to describe the atomic density as a function
of temperature. They are ρs(T ) = 0.83260 + 0.19553 × T and
ρl(T ) = 0.62178 + 0.36524 × T for crystal and liquid phases,
respectively. The radius of the spherical crystalline cluster
(R) is calculated using the lever rule with above densities,
which is consistent with the Gibbs dividing surface definition.
Figure 2(a) depicts the variation of R against temperature. The
calculated value of R at T = 0.64 is 16.43σ.

The energy densities in crystalline and liquid phases are
given by ρE

s and ρE
l , respectively. These energy densities were

calculated in the regions specified above. The fluctuations of

FIG. 2. (a) Temperature dependence of the radius (R) of the crystalline sphere.
The R is calculated using the lever rule. The solid line is obtained by a fitting
to the data points. At T = 0.64, we have R = 16.43 and dR/dT = −110.7. (b)
Fluctuations of total energy density as a function of the simulation time. The
top curve is for the liquid region, and the bottom curve is for the crystalline
region.
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ρE
s and ρE

l against the simulation time are plotted in Fig. 2(b).
These fluctuations are steady over the time of the simula-
tion, which is a good indication of the phase stability of the
crystalline cluster. The interfacial excess energy per unit sur-
face area e is calculated using Eq. (4), where V s = 4/3πR3,
V l = V − V s, and A = 4πR2. V is the volume of the simulation
box, thus V s and V l are equivalent to be calculated according
to the lever rule. The calculated interfacial excess energy is
e = 0.092 ± 0.005εσ−2 at T = 0.64.

The stress distribution in the system is calculated as
described below. First, the six inequivalent components of the
pressure tensor (pxx, pyy, pzz, pxy, pyz, and pzx) for each atom
are calculated in the Cartesian coordinate system. Then the full
pressure tensor of each atom is constructed and transformed
into a spherical coordinate system. The resultant components
of the pressure tensor in the spherical coordinate system are
given by prr , pθθ , pφφ , prθ , pθφ , and pφr . The center of mass
of the crystalline sphere is considered as the origin of both
coordinate systems. It is found that the magnitude of the
off-diagonal terms of the pressure tensor is negligible com-
pared to the diagonal terms due to the spherical symmetry
of the cluster. Thus, the pressure tensor can be expressed
as

P(r) = Pr(r)erer + Pt(r)
(
eθeθ + eφeφ

)
, (24)

where er , eθ , and eφ are the unit vectors and Pr and Pt are
the radial and the transverse components of the pressure ten-
sor, respectively. The components of the pressure tensor on
a spherical surface are found to be isotropic in the vicinity
of the interface, i.e., Pθ = Pφ = Pt . The radial profiles of
the components Pr(r) and Pt(r) are obtained by integrating
out the angular degrees of freedom over thin spherical shells
extending outwards from the origin. Figure 3(a) shows the

FIG. 3. (a) Variation of the pressure from the center of the crystalline cluster
in the liquid region. The solid line with open circles is the Pr (r). The dashed
line shows the variation of the total pressure. (b) Variation of excess stress
τ(r) from the center of the crystalline cluster. It is found that the mechanical
equilibrium condition is indeed fulfilled, namely Ps−Pl = ∫

∞
0

2τ(r)
r dr, which

is the generalization of the Laplace equation for liquid-vapor interfaces.24 (c)
Variation of the number density (ρ) from the center of the crystalline cluster.

calculated radial distributions Pr(r), Pt(r), and P(r) as
described above.

From Fig. 3(a), it is clear that the pressure inside the crys-
talline nucleus is lower than that of the liquid outside. This is
a result of the negative interfacial excess stress at the solid-
liquid interface in contrast to that of the liquid-vapor. The
excess stress in the interfacial region can be calculated using
the stress tensor as follows:

τ(r) =
∑

i

(
pi

rr − pi
θθ/2 − pi

φφ/2
)
, (25)

where i is the crystal atom index in a thin shell with a radius
r. The profile of τ(r) along the radial direction is plotted
in Fig. 3(b). The negligibly small excess stress inside the
crystalline cluster confirms that the crystalline cluster is at
a hydrostatic state. It is also observed that a non-zero negative
excess stress is accumulated in the vicinity of the crystal-liquid
interface. The total excess stress due to the interface can be cal-
culated by taking the summation of Eq. (25) over all the atoms
in the system. The net excess stress calculated at T = 0.64 is
τ = −0.483 ± 0.003εσ−3.

From the above analysis, we could assume that the
stress distribution of the spherical crystalline cluster is spher-
ically symmetric and hydrostatic. The magnitude of the
excess stress is considerably lower than that of orientation-
ally averaged stress of the planar interface.16 This could be a
result of the re-adjustment of the crystal structure near the
spherical interface to minimize the energy as well as the
stress.

The temperature dependence of the interfacial free energy
for the planar interface γ0(T ) was obtained from Laird et al.16

by averaging the interfacial free energy data along (100), (110),
and (111) directions. A fit to the data can be described by
γ0(T ) = 0.1081 + 0.3499T + 0.0880T2. From this fitting, the
estimated values of γ0 and dγ0/dT at T = 0.64 are 0.3680
(εσ−2) and 0.4626 (σ−2kB), respectively.

Using the above calculated values and the temperature
dependence of ρs, we can calculate the Tolman length (δ) using
Eq. (22). The calculated Tolman length is δ = 0.48 ± 0.05.
This value will make considerable deviation of γ along a
spherical interface from its planar value when the size of the
crystal cluster is small. In the following part of the paper, we
show that this correction is crucial in predicting the nucleation
barrier.

IV. DRIVING FORCE CALCULATION

To predict the nucleation barrier and to compare with the
simulated data, we need to calculate ∆µ which corresponds
to the known simulation conditions. Accurate estimates of ∆µ
are difficult as accurate values of the thermodynamic proper-
ties of the growing crystalline phase and the supercooled liquid
phases are hard to access using simulations due to their highly
metastability. To overcome this problem, we combine classical
Density Functional Perturbation Theory (cDFPT) with atom-
istic simulation data of the supercooled liquid to calculate the
∆µ since cDFPT is known to yield accurate thermodynamics
properties of bulk crystalline.21
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First, the Helmholtz free energy per atom as a function of
atomic number density at temperature T = 0.58 for both liquid
and face center cubic (fcc) crystalline phases is calculated from
the cDFPT. Polynomial fits to the calculated Helmholtz free
energy of crystalline (Fcrys) and liquid (F l) phases are given
by Fcrys(x) = 680.10 − 2581.94x + 3662.65x2 − 2323.45x3

+ 556.13x4 and F l(x) = 721.75 − 2993.53x + 4986.7x2

− 4203.67x3 + 1790.49x4 − 307.69x5, respectively, where
x = 1/ρ. The pressure can be calculated as P = −∂F/∂x and
hence the chemical potential of each phases can be obtained
from µ = F + P/ρ.

To obtain the ∆µ corresponding to the supercooling con-
dition used in the simulation paper,12 we need to know
the exact densities of the supercooled liquid and the grow-
ing crystalline phases. To this end, simulations described in
Ref. 12 are repeated with 4000 LJ particles at number density
ρ = 0.95, under constant volume (V ) and temperature (T ).
First the systems are heated to T = 1.2, the system melted,
and the simulation run about 1 × 105 time steps. Then the
system is supercooled to T = 0.58 and simulation was run con-
tinuously. The averaged pressure of the supercooled system is
2.466 ± 0.028 in LJ units. An abrupt drop of the pressure was
observed around 7.5 × 106 time steps, and the whole system
is transformed into a crystalline phase.

The supercooled liquid can be well approximated by a
mixture of crystalline clusters and liquid regions.30 The pres-
sure of the crystalline clusters (p1) may slightly differ from
that of the liquid (p2) due to the curvature at the interface. We
assume that the total volume fraction of the liquid regions is
the same as that of the crystalline clusters. Thus the measured
average pressure will be p̄ = (p1 + p2)/2, and the pressure
fluctuation of the supercooled system can be approximated
by ∆p = (p1 − p2)/2. This estimate can incorporate the major
uncertainty due to the fluctuations of the pressure of the super-
cooled liquid. Using this approximation, the pressure of the
liquid and the crystalline phases in the supercooled liquid can
be estimated to be 2.44 and 2.49, respectively. At these pres-
sures, the densities of the liquid and the crystalline cluster are
extracted from the cDFPT data. The estimated densities of the
liquid and the crystalline phases in the supercooled liquid are
ρl = 0.920 and ρs = 1.000, respectively. At these liquid and
crystal densities, the difference of the chemical potentials (∆µ)
is calculated from the cDFPT chemical potentials, which yield
the driving force corresponding to the simulation conditions,
∆µ = −0.320.

V. PREDICTING NUCLEATION BARRIER

Using the CNT Eq. (1), the nucleation barrier (∆G) can
be expressed as a function of the number of atoms in the
crystalline cluster as follows:

∆G(n) = n∆µ + 4π

(
3n

4πρs

)2/3

γ0*
,
1 + 2δ

(
3n

4πρs

)−1/3
+
-
. (26)

γ0 at T = 0.58 was estimated by extrapolating the temperature
dependence of γ0 of Ref. 16, and it is found that γ0 = 0.340.
The atomic density of the crystal clusters in the supercooled
liquid is ρs = 1.000 from the above calculation. Using the

values of δ = 0.48 and ∆µ = −0.320 calculated in this paper,
∆G(n) is plotted as a function of n as shown by the black solid
line in Fig. 4. The shaded region shows the uncertainty of the
nucleation barrier due to the uncertainty in δ = 0.48 ± 0.05.

The solid symbols are from simulation results.12

Figure 4 shows an excellent agreement of our theoretically
predicted free energy (∆G) profile with the simulated data,
which are known to lead to an accurate nucleation rate,12

with the assumption that the curvature correction δ at the
metastable liquid-crystal coexistence is the same as the cur-
vature correction for the nucleation free energy profile. The
red arrow in Fig. 4 indicates the location of the theoretically
predicted nucleation barrier, where ∆G = 16ε and the criti-
cal nucleus size is n∗ = 68 atoms. This prediction matches
well with the simulated data under the given supercooling
condition. The dashed line represents the CNT prediction with-
out the curvature correction (δ = 0) to the interfacial free
energy. It underestimates the barrier height and also the critical
size of the crystallites as pointed out in the literature. There-
fore, the curvature correction to the interfacial free energy
is a crucial part of consideration in the classical nucleation
theory.

The notion of curvature correction to the interfacial free
energy and even the higher order terms has been the sub-
ject of discussions.12,13,20,31–34 However, in previous attempts,
the corrections are extracted from parameter fitting to the
simulated data. Our approach presented in this work is a
first attempt to calculate δ and ∆µ directly from equilibrium
thermodynamics methods to obtain the nucleation barrier.

An interesting issue could be raised on the uniqueness
of the δ with respect to the choice of dividing surface. For
the liquid-vapor case, a “surface of tension” dividing surface
which is defined via the Laplace equation and a Gibbs dividing
surface lead to a consistent definition of the Tolman length.24

On the other hand, for a liquid-solid interface, the Laplace
equation is related to the interfacial stress, not the interfacial
free energy, thus a “surface of tension” dividing surface is not
well defined. In our approach, the Tolman length is defined
using the Gibbs dividing surface and the functional form of

FIG. 4. Nucleation barrier (∆G) as a function of the number of atoms in the
crystalline cluster (n). The solid symbols are the simulation data.12 The black
solid line is the prediction from our theoretical approach. The red arrow rep-
resents the predicted peak of the nucleation barrier from the theoretical curve.
The dashed line represents the CNT prediction using only the planar value
for the interfacial free energy (δ = 0). The shaded region is the uncertainty
corresponding to the error in δ = 0.48 ± 0.05.
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Eq. (2) from the liquid-vapor case. As for the uniqueness of
this δ definition, it certainly is an interesting question worth
pursuing.

VI. CONCLUSIONS

An analytical expression to calculate the first order cur-
vature correction to the crystal-liquid interfacial free energy
for a spherical interface (δ) is derived using equilibrium ther-
modynamics. δ is calculated directly using a spherical crystal
cluster which coexists with its liquid using atomistic simula-
tions. The correction parameter (δ) analogous to the Tolman
length at liquid-vapor interfaces is found to be 0.48± 0.05. The
driving force ∆µ corresponding to the same supercooled con-
dition is calculated by combining the cDFPT calculated free
energy with simulated data. With these major developments,
we predict the nucleation barrier using the classical nucleation
theory which shows an excellent agreement with the simulated
data.
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